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Field Calculations and Computations

This presentation will be broken in two sections. The �rst section will deal with the

development of basic formalism used in designing and analysing superconducting magnets.

The second section will deal with magnetic design and analysis of the actual magnets which

depart from the ideal geometry. The magnets for the Superconducting Super collider (SSC)

and the Relativistic Heavy Ion Collider (RHIC) will be used as examples.

1. Superconducting Magnets

A description of the cosine theta superconducting magnets is given here. A similar

description can be found elsewhere 86;128;144;175;177;179. Type II superconductors, which

allow penetration of magnetic �eld lines, are used in all superconducting magnets. They

can retain their superconducting state up to a �eld of �20 tesla and are being currently

used in designing magnets in the range of 3 to 15 tesla. Type I superconductors, which

were discovered �rst and which completely exclude �eld lines, lose superconductivity at a

much lower �eld of 0.18 tesla or below and therefore are not suitable for such applications.

Despite the promising prospects of high temperature superconductors 93 they are not yet

suitable for accelerator magnets.
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In superconducting magnets which are mostly intended for operation above 3 tesla max-

imum �eld, the �eld shape is primarily determined by the superconducting coils. Superfer-

ric magnets are a hybrid version of superconducting and iron dominated room temperature

magnets. In superferric magnets though, superconducting coils are used but the iron plays

an important role in shaping the �eld. The presentation here will be mostly limited to the

superconducting magnets.

The two main design goals for superconducting magnets are to obtain (a) a good quench

performance (a quench implies the loss of superconductivity in the cable) and (b) a good �eld

quality. After an overall introduction to the magnet geometry, the superconducting cable,

the cryogenic system, the magnetic design, the mechanical design, the magnet construction

and the magnet measurements will be brie
y described.

1.1. Introduction to the Magnet Geometry

Superconducting accelerator magnets are basically long cylindrical magnets whose cross

section is mostly uniform along the length except at the two ends. The cross section of the

80 mm aperture RHIC arc dipole magnet inside the cryostat is shown in Fig. 1.1. The

overall size of superconducting magnets is usually much larger then the aperture required

for the particle beam. As compared to the 80 mm coil inner diameter and 69 mm beam

tube inner diameter, the outside diameter of the RHIC cryostat is 610 mm. Similarly, in the

SSC main dipole magnet design, for a coil aperture of 50 mm, the cryostat outside diameter

was 660 mm.

The superconducting coils are made of Nb-Ti superconductor con�gured in a \Ruther-

ford Type" 154;176 cable. The coils are kept below a temperature of 4.65 kelvin. The cryogenic

system is designed to minimize the heat leak to room temperature outside the cryostat. The

coils are kept under compression to minimize conductor motion under Lorentz forces when

the magnet is energized. In RHIC magnets the space between the superconducting coils

and the yoke is �lled with RX630 phenolic spacers and in SSC magnets with stainless steel

collars. The purpose of the yoke is to provide magnetic shielding and additional �eld in the

magnet aperture. The yoke has several features (see Fig. 1.1) to serve a variety of purposes.

These features include (a) loading 
ats to provide compression on the coil through a heavy



Superconducting Magnets 3

Figure 1.1: A cross section of the 80 mm aperture RHIC arc dipole

magnet with the important magnetic, mechanical and cryogenic system

components marked. The cold mass is asymmetrically located inside the

cryostat. The cross section shown here is at the axial center.
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press (b) holes for helium 
ow, saturation control and yoke pins (c) cutouts for electrical

bus work, collaring keys, tabs which align the RX630 spacers to de�ne the coil pole location

and survey notches for aligning the magnet in the cryostat. A stainless steel shell, which

also provides radial pressure, is put outside the yoke for helium containment.

The part of the magnet assembly described above (superconducting coils, iron yoke and

stainless steel) is called the \coldmass" which remains below 4.65 degree kelvin in RHIC

and SSC designs. The coldmass is put inside the cryostat which is a vacuum vessel. A

number of components between the coldmass and the cryostat are required for structural

and thermal purposes.

1.2. Superconducting Cable

In most magnet designs the superconducting wire is made of NbTi �laments embedded

in a copper matrix. NbTi has good mechanical properties (ductility) but is generally limited

to producing �7.5 tesla at 4.5 kelvin and �10.5 tesla at 1.8 kelvin. A higher �eld can be

reached with the more expensive Nb3Sn superconductor. However, Nb3Sn does not have

similarly good mechanical properties and therefore coil manufacturing becomes much more

complicated. The titanium in NbTi alloy is generally about 46% by weight. The measured

critical current density (the current density at which the wire looses its superconducting

properties) as a function of applied �eld at 4.2 K is shown in Fig. 1.2 (courtesy A. Ghosh) for

the NbTI wire used in RHIC corrector magnets. A similar B � J performance is obtained

in the superconducting cable used in the other types of RHIC magnets. In addition to

the superconductor, the cable contains copper to provide stability against quench and for

heat conduction. The amount of copper in the cable is usually more than the amount

of superconductor. The superconducting cable, used in RHIC magnets, has a copper to

superconductor ratio (by volume) of 3.0 in corrector magnets, of 2.5 in trim quadrupole

and sextupole magnets, of 2.2 in the 80 mm and 100 mm aperture magnets and 1.8 in the

130 mm aperture and 180 mm aperture insertion magnets. The cable used in the inner layer

of the SSC dipole had a copper to superconductor ratio of 1.3 and the one used in the outer

layer had a copper to superconductor ratio of 1.8. The �lament size in the superconducting

wire used in the RHIC and SSC dipole magnet design is 6 �m except for the wire used in
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Figure 1.2: The measured (courtesy A. Ghosh) critical current density

(J
c
) at 4.2 K in the superconductor of the wire used in the RHIC corrector

magnets as a function of applied �eld (B).
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the RHIC corrector, sextupole and trim quadrupole magnets where it is 10 �m. There are

about 3500 �laments in each wire of the RHIC dipole cable. The wire (strand) diameter is

about 0.65 mm. The parameter list of the cable used in RHIC dipole magnet is given in

Table 1.1.

Table 1.1: Design speci�cations of the superconducting cable for the 80

mm aperture RHIC arc dipole and quadrupole magnets.

Cable parameters Value

Filament diameter 6.0 �m

Filament spacing >1.0 �m

Number of �laments per wire 3510 � 20

Copper to Superconductor Ratio (2.25�0.1):1

Strand (wire) diameter 0.648�0.003 mm

No. of strands in cable 30

Critical current in wire at 5 T, 4.2 K 264 A

Critical current in cable at 5 T, 4.2 K 7524 A

Cable width 9.73 � 0.03 mm

Cable mid-thickness 1.166�0.006 mm

Cable keystone angle 1.2�0.1 degree

Cable lay pitch 74 �5 mm

\Rutherford" cable is used in most large scale production of accelerator magnets. This

type of cable is wide and 
at and is made of a number of wires (strands) twisted together

in a spiral shape. The cable is asymmetrically compressed across the 
at side with one

edge being thinner than the other. This provides a \keystone" angle in the cable which

helps the coils to conform to a circular geometry with each turn lying approximately on a

radius. In a fully keystoned cable, the ratio of thickness of the two edges of the cable is

the same as that between the coil inner radius and outer radius. The cable is electrically
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insulated to deal with the high voltage (over 1 kV) that is created during a quench when

one turn is in the superconducting phase and the other in the normal. The RHIC design

uses all-Kapton (Kapton is a registered trademark of Dupont Corporation) insulation which

has good electrical break down, cryogenic and stability in ionizing radiation properties and

has good dimensional tolerance. Another type of insulation used on superconducting cables

is �berglass tape impregnated with B-stage epoxy.

The superconducting cable produced for the RHIC magnet program is the result of

signi�cant R&D and a close collaboration with industry. The standard deviation in the

variation in the cable thickness and other mechanical dimensions has been generally kept

to about the 5 �m level. This has been crucial to providing good �eld quality and proper

compression on the coils in the magnet. Moreover, the variation in the critical current

density is also kept to about 2% to minimize the variation in the �eld harmonics associated

with superconductor e�ects.

1.3. Cryogenic System

Cooling is provided by supercritical helium. A small radial gap between the beam tube

and the superconducting coil provides a space for helium 
ow which partly cools the coil

and removes the heat deposited during machine operation or instability in the magnet. The

major portion of the heat removal and helium 
ow takes place in the four helium holes

in the yoke. In order to reduce the heat load on the cryogenic system, the design of the

coldmass and cryostat is optimized to minimize heat leak. To deal with a large thermal

gradient between the low temperature in the superconducting coils and room temperature

outside the cryostat, either one or two staged thermal shields are used where the heat is

intercepted and removed. In the SSC dipole design two stage heat removal was planned

(a) at 20 kelvin by gaseous helium and (b) at 80 kelvin by liquid nitrogen. In the RHIC

dipole design, heat leakage is removed at 55 kelvin. Since the radiation heat leak loss goes

as the di�erence between the fourth power of the two temperatures, only a small di�erence

is expected between the two and one shield cases. A blanket of thermal insulation is placed

just inside the vacuum vessel wall and between and interior to the shields.
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The coldmass is put inside the vessel on a few support posts. The location of the support

posts is chosen to reduce sagging of the coldmass. To minimize the heat leak through them,

they are made as long as possible and to accommodate that larger length without increasing

the cryostat outer diameter, the coldmass is positioned above the center of the cryostat (see

Fig. 1.1). In both RHIC and SSC magnets the cryostat is made of low carbon magnetic

steel which reduces the exterior �eld. However, a systematic o�set between the vertical

center of the cryostat and the center of the coldmass creates a skew quadrupole harmonic

in the dipole at high �eld.

1.4. Mechanical Design

Good quench performance of the superconducting magnets is closely related to a good

mechanical design which minimizes the motion of the superconducting wires. The design

must be structurally sound to deal with the Lorentz forces when the magnet is energized,

the thermal forces during cool-down and the mechanical forces during transportation of the

magnet.

A large magnetic �eld in superconducting magnets generates a large Lorentz forces

on the superconducting coils which may cause a small amount of conductor motion. This

conductor motion generates heat which may start a quench in the magnet. The direction of

the Lorentz forces in the cross section of the magnet is such that compression of the coil from

the coil pole to the coil midplane is by the azimuthal component and compression outward

is by the radial component. To deal with this situation, the coils are pre-compressed with

a large mechanical compressive force which counters the Lorentz forces and thus minimizes

conductor movement. In the SSC magnets, this compression on the coil is provided by

stainless steel collars and in RHIC magnets by the yoke itself. In these designs, a signi�cant

part of the compression applied at room temperature is lost when the magnet is brought to

a lower temperature. This is because of a di�erence in the coe�cients of thermal expansion

of superconducting coils, stainless steel and the yoke iron. Therefore, in order to assure an

adequate compression when the magnet is cold, a much higher (a factor of two to three)

compression is applied at room temperature. There are some alternate design concepts

which have been tested in some magnets, where this loss of compression is avoided 41;127.



Superconducting Magnets 9

Finally a stainless steel shell is welded on the yoke outer diameter to contain the helium.

This also provides a radial pressure on the coil-yoke assembly and in the RHIC-type design

the radial component of the Lorentz forces are �nally transmitted to it. To deal with the

outward axial component of the Lorentz forces, the ends are restrained and sometimes even

compressed (loaded) axially. A detailed description of the mechanical design and analysis

of the SSC magnets can be found elsewhere 44.

1.5. Magnetic Design

The main goal of the magnetic design is to optimize the geometry of the coil and

iron shape to produce a highly uniform �eld. In addition, it is bene�cial to minimize the

maximum�eld on the conductor (peak �eld) and tomaximize the transfer function (tesla per

ampere) to obtain a high quench �eld (computed from cable short sample measurements).

The design must also ful�ll all mechanical and cryogenic requirements and a magnet based

on this design should be as simple as possible to manufacture.

The coils are made of a number of turns of superconducting cable which are grouped

in several current blocks. A cosine theta current distribution produces an ideal dipole �eld.

Copper wedges are placed between the blocks of turns to approximate the cosine theta

current distribution. In designs which use partially keystoned cables, the wedges also serve

an important mechanical purpose in providing a proper arc shape to the current blocks

in the circular coil geometry. The size of the current blocks and the copper wedges are

parameters used to minimize the �eld harmonics and to maximize the quench �eld.

The iron yoke provides magnetic shielding. In addition, the magnetized yoke gives an

extra contribution to the central �eld which in most RHIC magnets is �50% of the coil

�eld. However, at high �eld, the magnetization in the iron yoke is not proportional to the

current in the coils, so the yoke geometry must be carefully designed to maintain a good

�eld quality at all �elds.

The coil end design is complicated. The cable must be bent carefully to bring it from

one side of the coil to the other side. Spacers are inserted between the blocks of turns in

the end not only to minimize the peak �eld and �eld harmonics but also for the mechanical

purpose of reducing the strain on the cable. In most RHIC magnet designs the ends are
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enclosed by the iron yoke laminations but in SSC and in most other magnet designs the

iron laminations are replaced by stainless steel laminations to minimize the peak �eld in

the ends.

The �eld errors in magnets are described in terms of �eld harmonics (see next section

Eq. (2:17)) which are also referred to as multipoles. The are generally divided in the

following three categories based on their sources :

1. Geometric multipoles

2. Persistent current multipoles

3. Saturation multipoles

The geometric multipoles are related to the magnet geometry. An error (or a departure)

from the ideal geometry would create harmonics other than those desired. The persistent

current multipoles are related to the persistent current in the superconductors. As the

�eld in magnet is changed, the persistent (shielding) currents are induced in a direction to

oppose the changing �eld 144. Unlike in normal conductors, these currents persist for a long

time in superconductors and contribute signi�cantly to the �eld errors at low �elds where

their relative contribution is high. The saturation multipoles are related to the saturation

magnetization of iron at high �eld. A non-uniform �eld and hence a non-uniform (as a

function of azimuth) relative contribution of the iron distorts the �eld shape and �eld

errors are thereby introduced.

1.6. Magnet Construction

The construction of the superconducting magnets is a long and complex process which

requires a high level of engineering and quality control to assure consistently good quality in

large scale magnet production 6. The magnet manufacturing tooling must itself be carefully

designed to realize the computed �eld quality and quench performance. Some of the major

steps of the manufacturing process are brie
y described here in the case of RHIC arc dipole

magnets.

The superconducting cable and the copper wedges are insulated with Kapton layers.

The magnet coils are wound on a precision convex surface with a winding machine feeding
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the cable continuously. The copper wedges in the coil cross section and the wedge tips in the

coil ends are periodically inserted as required by the optimized design. The Kapton tape,

wound around the cable, is coated on one side with a dry adhesive which is activated (cured)

by heat at a temperature of about 130 C while under compression. The coils are cured in a

curing �xture (mold) and the temperature and curing pressure described above may contain

several curing cycles with di�erent combinations of curing temperature and curing pressure.

Once cooled, the coil is �rmly �xed in the shape determined by the dimensions of the curing

mold.

The coils are installed in the iron yoke together with the RX630 phenolic spacers and

other parts. The following is the sequence of the steps required in this operation: (a) the

laminations for the lower yoke half are stacked (b) the RX630 spacers are put in place (c)

the lower coil is installed (d) the beam tube is inserted (e) the upper coil, pre-assembled

with the RX630 insulator, is put in place and (f) the laminations for the upper yoke half

are stacked on this assembly. The coil is compressed with a press applying pressure on

the yoke collar at the loading 
ats. The keys are inserted to retain this compression. The

stainless steel shell is welded with the required sagitta (axial curvature of the magnet) in

the coldmass. The stainless steel end plates are welded and coil end force is applied before

the electrical installation is completed. Then the coldmass is placed inside the cryostat on

the support posts. All cryogenic piping and heat shields are also installed.

1.7. Magnet Measurements

Apart from a variety of mechanical and electrical measurements at the various stages

of magnet construction, the two measurements which de�ne the �nal quality of magnets

for machine operation are (a) the quench performance and (b) the �eld harmonics. For

these measurements the magnets must be tested at cryogenic temperatures. It is, however,

expensive and time consuming to test each and every magnet cold (in the superconducting

phase). Therefore, in the RHIC magnet program only a part of the magnets are tested

cold before they are installed in the tunnel 170. The selection of the magnets chosen for

cold testing is carefully made to minimize the risk of not testing all magnets cold. The

required maximum operating current for RHIC is about 5 kA and the design margin over
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the machine requirements for most magnets for the computed quench current is over 30%.

The measured performance of the magnets tested cold show that most magnets require only

a few (2-5) quenches to reach the computed quench current 170.

Warmmagnetic measurements are performed on all magnets. At room temperature, the

current in the cable is carried by the copper intermixed with the superconductor. There is an

expected systematic di�erence between warm and cold harmonics because of (a) a change

in the magnet geometry due to thermal contraction during cool-down (b) the persistent

current e�ects in the superconductor and (c) the saturation e�ects due to the non-linear

properties of the iron yoke. Based on those magnets that are tested both warm and cold, a

good warm-to-cold correlation in the �eld harmonics has been obtained 170. This correlation

is used to estimate the �eld quality in those magnets that are not tested cold.

The magnetic measurements are carried out with an array of windings having a certain

radius 175, mounted on a rotating cylinder which intercept the �eld in the magnet aperture.

The geometry of these coils is chosen so that the Fourier analysis of the voltage induced

in the various windings determine the �eld harmonics. The accuracy of the measurements

depends on the accuracy of the measuring coil geometry, the electronic signal measurement

and the analysis of the measured signal.

In the long curved RHIC magnets, the complete measurements are made in 10 steps

with a meter long measuring coil system which is referred to as a mole 49. In addition,

the integral of the �eld along the axis is also measured with a long stationary coil. For a

more accurate measurement of the �eld strength at a point an NMR (Nuclear Magnetic

Resonance) probe is also used.

The measured �eld quality in 80 mm aperture RHIC arc dipoles is shown in Table 1.2

and Table 1.3. Measuring the �eld harmonics accurately and managing it in a large number

of magnets (1740 are required for RHIC) is a quite complex task.

The \Mean" of the distribution for the harmonic b
n
(which is also sometimes referred

to as the systematic value of b
n
) in N magnets is de�ned as follows :

< b
n
>=

1

N

NX
k=1

(b
n
)
k
; (1:1)
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where (b
n
)
k
is the value of harmonic b

n
in the kth magnet. The \SIGMA" (�), also the

RMS (Root Mean Square) deviation from the \Mean" b
n
, is de�ned as follows :

� (b
n
) =

vuut 1

N

NX
k=1

[(b
n
)
k

� < b
n
>]

2
: (1:2)

The primary purpose of the harmonic measurements is to verify that the machine

requirements needed for beam stability and design beam life time in RHIC are satis�ed.

In addition, the �eld harmonics are also used as a tool to detect possible manufacturing

defects in the magnets or a drift in the mechanical dimensions of the components used in

the manufacturing process. Since the harmonics are the analysis of the �eld created by the

geometry of the coil and yoke, they are a re
ection of magnet geometry. The accuracy of

the magnetic measurements is su�cient to �nd a 100�m or less error in most of the critical

components used in manufacturing the magnets.
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Table 1.2: The measured integral transfer function (ITF) in tesla�m/kA,

body transfer function (SSTF) in tesla/kA and normal �eld harmonics (b
n
,

de�ned elsewhere) at 25 mm reference radius in the 9.45 m long 80 mm

aperture RHIC arc dipole magnets (data courtesy Jain and Wanderer).

The current at which measurements are made and the number of magnets

(shown in parenthesis) used in arriving at the statistics are shown here.

The 30 A measurements are made when the magnet is warm (room tem-

perature), in the non-superconducting state and the current is carried by

the copper in the cable. < b
n
> is the mean and �(b

n
) is the standard

deviation of harmonic b
n
in the number of magnets measured.

.

< b
n
> ��(b

n
) < b

n
> ��(b

n
) < b

n
> ��(b

n
) < b

n
> ��(b

n
)

30A(296) 660A(63) 1450A(61) 5000A(62)

ITF 6.6545� 0.0021 6.6698� 0.0027 6.6769� 0.0021 6.4180� 0.0024

SSTF 0.7042� 0.00021 0.7078� 0.0003 0.7080� 0.00028 0.6798� 0.00034

b1 0.25�0.37 0.08�0.28 0.04�0.27 0.10�0.28

b2 3.54�1.74 -0.17�2.22 2.18�1.77 0.83�1.76

b3 -0.03�0.10 0.00�0.08 0.00�0.08 0.01�0.08

b4 0.22�0.44 -0.33�0.57 -0.15�0.58 0.15�0.59

b5 0.01�0.03 0.00�0.03 0.00�0.03 -0.03�0.04

b6 0.12�0.11 -0.13�0.13 -0.02�0.14 1.19�0.14

b7 0.00�0.01 -0.01�0.01 -0.01�0.01 -0.01�0.01

b8 0.09�0.11 0.14�0.12 0.13�0.12 0.12�0.12

b9 0.00�0.01 0.02�0.02 0.02�0.02 0.02�0.02

b10 -0.53�0.02 -0.58�0.02 -0.56�0.02 -0.58�0.02
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Table 1.3: The measured a
n
(skew harmonics) at 25 mm reference radius

in the 9.45 m long 80 mm aperture RHIC arc dipole magnets (data courtesy

Jain and Wanderer). The current at which the measurements are made

and the number of magnets (shown in parenthesis) used in arriving at

the statistics are shown here. The 30 A measurements are made when the

magnet is warm (room temperature), non-superconducting and the current

is carried by the copper in the cable. < a
n
> is the mean and �(a

n
) is the

standard deviation a
n
in the number of magnets measured.

.

< a
n
> ��(a

n
) < a

n
> ��(a

n
) < a

n
> ��(a

n
) < a

n
> ��(a

n
)

30A(296) 660A(63) 1450A(61) 5000A(62)

a1 -0.20�1.62 0.28�1.53 0.21�1.52 -1.51�1.51

a2 -1.11�0.20 -1.03�0.17 -1.03�0.17 -1.07�0.18

a3 -0.01�0.49 -0.03�0.42 -0.02�0.42 -0.36�0.41

a4 0.18�0.07 0.21�0.06 0.21�0.06 0.20�0.06

a5 -0.01�0.17 0.02�0.15 0.01�0.15 -0.06�0.16

a6 -0.11�0.03 -0.10�0.02 -0.10�0.02 -0.10�0.02

a7 0.00�0.05 -0.01�0.05 -0.01�0.05 -0.01�0.05

a8 0.02�0.01 0.02�0.01 0.02�0.01 0.02�0.01

a9 0.00�0.01 0.04�0.02 0.04�0.02 0.04�0.02

a10 -0.01�0.00 -0.01�0.01 -0.01�0.01 -0.01�0.01
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2. Magnetic Field Analysis in Accelerator Magnets

In this section an outline of the formalism and theory used in carrying out the �eld

calculations in the superconducting magnets is given. Starting from �rst principles, basic

expressions are developed which are used in designing and describing the magnetic �elds in

the accelerator magnets.

The uniformity of the magnetic �eld is very important since it determines the per-

formance of the machine. A typical requirement for the �eld quality in the accelerator

magnets is that the deviation from the ideal shape should be within a few parts in 104. The

uniformity of the �eld is expressed in terms of the Fourier harmonic components.

2.1. Basic Electromagnetic Field Equations

The calculation of the magnetic �eld in accelerator magnets is too complex to be done

directly by solving Maxwell's equations. However, the most complicated formulae describing

the �eld shape in the magnets are derived primarily from them. In this section, Maxwell's

equations and other commonly used expressions of electro-magnetic theory 95;129;150 are

brie
y described. Although the magnetic �eld in the accelerator magnets is not static in

time, the e�ects of time variation are by and large negligible in the problems to be addressed

during the course of this work. Therefore, most of the detailed analysis is limited to the

magneto-static case only.

The four Maxwell's equations are :

r � ~D = �; (2:1a)

r � ~B = 0; (2:1b)

r� ~E +
@ ~B

@t
= 0; (2:1c)

r� ~H = ~J +
@ ~D

@t
: (2:1d)

Here ~H is the magnetic �eld, ~E is the electric �eld, ~B is the magnetic induction and

~D is the displacement vector. � denotes the charge density and ~J the current density, and

these two are related by the following continuity equation,
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r � ~J +
@�

@t
= 0: (2:2)

Furthermore, ~B and ~H are related by the following equations:

~B

�
o

= ~H + ~M; (2:3a)

~B

��
o

= ~H; (2:3b)

where �
o
is the permeability of the vacuum (�

o
= 4� � 10�7 henry/meter) and � is the

relative permeability of the medium (relative with respect to that of vacuum). Often, �

is simply referred to as the permeability (which is in fact the case in CGS units) and the

same convention is followed here unless otherwise explicitly mentioned. ~M denotes the

magnetization (or magnetic polarization) of the medium. In free space (vacuum) ~M is 0.

In an isotropic medium ~H, ~B and ~M are parallel to each other.

Furthermore, ~D and ~E are related by the following equations:

~D = �
o

~E + ~P ; (2:4a)

~D = ��
o

~E; (2:4b)

where ~P is the electric polarization and �
o
is the permittivity in vacuum (�

o
= 8:854�10�12

farad/meter). � is the relative permittivity of the medium. In free space (vacuum), the

electric polarization is 0.

The constants �
o
and �

o
are related through the relation

�
o
�
o
=

1

c2
;

where c is the velocity of light (c=2.998 � 108 m/s). Since ~B has a zero divergence, it may

be expressed in term of a magnetic vector potential ~A as

~B = r� ~A: (2:5)

The vector potential ~A can be obtained at any point (~r) due to a current density ~J(~r0)

with the help of the following integral equation :
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~A (~r) =
��

o

4�

Z
V

~J
�
~r0

�
j~r � ~r

0 j
dv; (2:6)

where ~r and ~r0 are three dimensional coordinates and dv is the three dimensional volume

element.

The components of the �eld in Eqs. (2:5) in Cartesian coordinates are given by

B
x
=
@A

z

@y
�
@A

y

@z
; (2:7a)

B
y
=
@A

x

@z
�
@A

z

@x
; (2:7b)

B
z
=
@A

y

@x
�
@A

z

@y
; (2:7c)

and in cylindrical coordinates by

B
r
=

1

r

�
@A

z

@�

�
�
@A

�

@z
; (2:7d)

B
�
=
@A

r

@z
� @A

z

@r
; (2:7e)

B
z
=

1

r

�
@ (rA

�
)

@r
�
@A

r

@�

�
: (2:7f)

The research work to be described is restricted to static magnetic �elds only and electric

�elds are not considered. During the accelerating cycle of the machine, the magnetic �eld

does change with time in the superconducting magnets. However, for the problems to be

discussed during the course of this work, the change in magnetic �eld has negligible e�ect

on �eld quality. Therefore the following two Maxwell's equations for the magnetostatic case

are used in developing various formulae

r � ~B = 0; (2:8a)

r� ~H = ~J: (2:8b)

Amp�ere's law I
S

~H � ds = I; (2:9)

can be obtained from Eqs. (2:8b) by integrating and using Stoke's theorem :

I
C

~V � d~l =
Z
S

�
r� ~V

�
� ~nda
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where ~V is a well behaved vector �eld, S is an open arbitrary surface, C is the closed curve

bounding S, d~l is a line element of C, and ~n is a vector element normal to S. The right hand

side of the equation simply states that I =
R
~J �~nda is the total current 
owing through the

area.

Poisson's equation for the vector potential is derived here under the assumptions that

~B = �0� ~H , the medium is homogeneous (i.e. � is constant over a �nite space) and isotropic.

Using ~B = �0� ~H and ~B = r� ~A in Eqs. (2:8), one obtains :

r�r� ~A = �0� ~J: (2:10)

The following identity is used to simplify the above equation :

r2 ~A = r
�
r � ~A

�
� r�r� ~A: (2:11)

In Cartesian coordinates the above Laplacian operator (r2 ) can be applied to a vector

~A whose ith component is r2A
i
. In other coordinate systems Eq. (2:11) must be used to

determine the expression for r2 ~A. In the cylindrical coordinate system :

r2 ~A
z
=

1

r

@

@r

�
r
@A

z

@r

�
+

1

r2
@2A

z

@�2
; (2:12)

when A
r
= A

�
= 0 by symmetry (axial symmetric case).

The choice of r � ~A has thus far has been arbitrary and it is made zero in the Coulomb

gauge (in the magnetostatic case). In that case Eq. (2:10) leads to Poisson's Equation as

r2 ~A = ��0� ~J: (2:13)

In the 2-dimensional case, when the direction of current 
ow is parallel to the z-axis,

J
x
= J

y
= 0. This implies that A

x
= A

y
= 0 and @Az

@z

= 0. Therefore, the above expression

becomes,

r2A
z
= ��0�Jz; (2:14)

which in the Cartesian coordinate system gives :

@2A
z

@x2
+
@2A

z

@y2
= ��0�Jz : (2:15)

In the case of axial symmetry, the Eq. (2:14) in cylindrical coordinates becomes :

1

r

@

@r

�
r
@A

z

@r

�
+

1

r2
@2A

z

@�2
= ��0�Jz; (2:16)

on using Eq. (2:12).
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2.2. Field Harmonic De�nitions

It is useful to describe the magnetic �eld inside the aperture of accelerator magnets in

terms of harmonic coe�cients 96;140;144;175. The discussion will be limited to 2-dimensional

analysis, which describes the �eld in the body (or straight section) of a long magnet. When

the magnetic �eld is evaluated a few aperture diameters away from the two ends of the

magnet, the axial component of the �eld is negligible. The accelerator magnets examined

here are those in which the �eld is consists of one fundamental harmonic which is several

orders of magnitude larger (usually 104) than any other harmonic present.

The skew (a
n
) and the normal (b

n
) �eld harmonics are de�ned through the following

relation :

B
y
+ iB

x
= 10�4B

R0

1X
n=0

[b
n
+ i a

n
] [cos (n�) + i sin (n�)]

�
r

R0

�
n

; (2:17)

where B
x
and B

y
are the horizontal and vertical components of the magnetic �eld at (r,�)

and i =
p
�1. R0 is the normalization radius. The magnets for the Relativistic Heavy Ion

Collider (RHIC) have a coil radius ranging from 40 mm to 90 mm. In most of these magnets,

the normalization radius is taken to be 5

8
of the coil radius. The value of the normalization

radius is 25 mm for the 80 mm aperture diameter of the RHIC arc dipoles and quadrupoles,

40 mm for the 130 mm aperture of the RHIC insertion quadrupoles, 31 mm for the 100

mm aperture of the RHIC insertion dipoles and 60 mm for the 180 mm aperture RHIC

insertion dipoles 140. B
R0

is the magnitude of the �eld due to the fundamental harmonic at

the reference radius on the midplane. In the dipoles, B
R0

= B0 (the �eld at the center of

the magnet), in the quadrupoles, B
R0

= G�R0 (G being the �eld gradient at the center of

the magnet), and in general for a 2(m+ 1)
th

pole magnet,

B
R0

=
Rm

m!

�
@mB

y

@xm

�
x=0;y=0

: (2:18)

Eq. (2:17) can be re-written in several other forms using complex variables. In this

section z represents the complex coordinate and B(z) represents the complex �eld as follows:

z = x + i y;

(x + i y)
n

= rn (cos [n�] + i sin [n�]) ;
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B (z) = B
y

+ i B
x
;

c
n
= b

n
+ i a

n
;

Thus :

B
y
+ iB

x
= 10�4B

R0

1X
n=0

[b
n
+ i a

n
] [x + i y]

n

�
1

R0

�
n

(2:19)

B (z) = 10�4B
R0

1X
n=0

c
n

�
z

R0

�
n

(2:20)

The harmonics used so far (a
n
; b

n
; c

n
) are all dimensionless coe�cients. However, in

another representation, the �eld is expressed in terms of coe�cients which carry the units

of magnetic �eld. These are usually distinguished from the harmonics a
n
and b

n
given in

Eq. (2:17) by the use of the uppercase alphabet. The two are related as follows:

A
n+1 = 10�4B

R0
a
n
; (2:21a)

B
n+1 = 10�4B

R0
b
n
; (2:21b)

C
n+1 = 10�4B

R0
c
n
: (2:21c)

Using these, Eq. (2:20) can be written as :

B (z) =
1X
n=1

C
n

�
z

R0

�
n�1

: (2:22)

In this case the summation begins from n = 1 instead of n = 0. Sometimes C
n
is also

written as C(n).

The de�nition for the �eld harmonics used so far is the one which is more common in

U.S. laboratories. The European laboratories (such as CERN and HERA) use a slightly

di�erent de�nition 179. The two are related as follows :

(a
n+1)

Europe

= � 10�4 (a
n
)
US

(b
n+1)

Europe
= 10�4 (b

n
)
US

Yet another representation of �eld harmonic is used in beam dynamics calculations

where the particle trajectory is studied in the machine 25. For this purpose, the �eld is
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expressed in the form of a Taylor series. The vertical component of the �eld on the median

plane is expressed as

B
y
(x; 0) =

1X
n=0

1

n!

�
dnB

y

dxn

�
0

xn; (2:23)

where the subscript 0 implies that the derivatives are evaluated at the equilibrium orbit

(which is generally at the center of the magnet). n=0 gives the vertical component of the

�eld at the center of the magnet, which is represented as B0 and the above equation becomes

B
y
(x; 0) = B0 +

1X
n=1

1

n!

�
dnB

y

dxn

�
0

xn; (2:24)

Similarly, the horizontal component of the �eld (B
x
) on the horizontal axis (X-axis) is

expressed as :

B
x
(x; 0) =

1X
n=0

1

n!

�
dnB

x

dxn

�
0

xn: (2:25)

where, the subscript 0 implies that the derivatives are evaluated at the equilibrium orbit.

n=0 gives the horizontal component of the �eld at the center of the magnet, which is ideally

zero in the magnets considered here.

The following are de�ned :

k
n
=

1

B0�

�
dnB

y

dxn

�
0

; (2:26a)

h
n
=

1

B0�

�
dnB

x

dxn

�
0

; (2:26b)

with � as the bending radius of the particle in the magnet and (B0�) as the magnetic

rigidity. Therefore, the Eq. (2:24) and Eq. (2:25) become

B
y
(x; 0) = B0�

 
1

�
+

1X
n=1

1

n!
k
n
xn

!
; (2:27a)

B
x
(x; 0) = B0�

 
1X
n=0

1

n!
h
n
xn

!
: (2:27b)

k
n
and h

n
used in the above equations can be related to a

n
and b

n
given in Eq. (2:19)

when the horizontal and vertical components of the �eld are evaluated on the horizontal

axis, respectively. Therefore, with b0 = 104 and B
R0

= B0, one obtains

h
n
=

10�4 n!

� Rn

0

a
n
; (2:28a)

k
n
=

10�4 n!

� Rn

0

b
n
: (2:28b)
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The expressions for the horizontal and vertical component of the �eld in Eq. (2:17) can

be separated out as

B
x
= 10�4B

R0

1X
n=0

[b
n
sin (n�) + a

n
cos (n�)]

�
r

R0

�
n

; (2:29a)

B
y
= 10�4B

R0

1X
n=0

[b
n
cos (n�) � a

n
sin (n�)]

�
r

R0

�
n

: (2:29b)

The radial and azimuthal components of the �eld can be computed by using the fol-

lowing relations :

8>>:B
r

B
�

9>>; =

8>>: cos (�) sin (�)

�sin (�) cos (�)

9>>;
8>>:B

x

B
y

9>>; (2:30)

Therefore, the radial and azimuthal components of the �eld can be written as :

B
r
= 10�4B

R0

1X
n=0

[b
n
sin [(n + 1) �] + a

n
cos [(n + 1) �]]

�
r

R0

�
n

; (2:31a)

B
�
= 10�4B

R0

1X
n=0

[b
n
cos [(n + 1) �] � a

n
sin [(n + 1) �]]

�
r

R0

�
n

: (2:31b)

In order to represent the vector potential in terms of harmonics, the following relations

can be used :

B
r
=

1

r

@A
z

@�
and B

�
= �

@A
z

@r
;

since in the 2-dimensional case A
x
= A

y
= 0. Therefore, on integrating Eqs. (2:31) one

obtains

A
z
= �10�4B

R0

1X
n=0

�
R0

n+ 1

�
[b
n
cos [(n + 1) �]� a

n
sin [(n+ 1) �]]

�
r

R0

�
n+1

: (2:32)

The inverse transform can be used to obtain individual �eld harmonics at a reference

radius R0 in terms of �eld or vector potential. For this, �rst a component of the �eld or

vector potential is evaluated at a radius r and then the integration is performed over the

azimuth as follows :

a
n
= � 104

�B
R0

�
R0

r

�
n
Z 2�

0

B
y
(r; �)sin (n�) d�; (2:33a)
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=
104

�B
R0

�
R0

r

�
n
Z 2�

0

B
x
(r; �)cos (n�) d�; (2:33b)

=
104

�B
R0

�
R0

r

�
n
Z 2�

0

B
r
(r; �)cos ((n + 1) �) d�; (2:33c)

= � 104

�B
R0

�
R0

r

�
n
Z 2�

0

B
�
(r; �)sin ((n + 1) �) d�; (2:33d)

=
104 (n+ 1)

�R0BR0

�
R0

r

�
n+1 Z 2�

0

A
z
(r; �)sin ((n + 1) �) d�; (2:33e)

b
n
=

104

�B
R0

�
R0

r

�
n
Z 2�

0

B
y
(r; �)cos (n�) d�; (2:33f)

=
104

�B
R0

�
R0

r

�
n
Z 2�

0

B
x
(r; �)sin (n�) d�; (2:33g)

=
104

�B
R0

�
R0

r

�
n
Z 2�

0

B
r
(r; �)sin ((n+ 1) �) d�; (2:33h)

=
104

�B
R0

�
R0

r

�
n
Z 2�

0

B
�
(r; �) cos ((n+ 1) �) d�; (2:33i)

= �10
4 (n + 1)

�R0BR0

�
R0

r

�
n+1 Z 2�

0

A
z
(r; �)cos ((n + 1) �) d�: (2:33j)

For the primary harmonic component n = m, when the �eld is perpendicular to the hori-

zontal plane, one obtains

b
m
= 104 and a

m
= 0:
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2.3. Analytic Expressions for Accelerator Magnets

Analytic expressions for the basic cosine theta superconducting magnet design have

been previously obtained and described by several authors 12�18;144;175;179. Superconducting

accelerator magnets are usually long cylindrical magnets with the current 
owing parallel to

the magnet axis (z-axis). The geometry of these magnets is such that one can compute the

�eld in the body of the magnet by assuming that the current is carried by a large number

of wires parallel to the z-axis. The total �eld is obtained by simply superimposing the �eld

created by these wires. For this purpose, it is suitable to carry out a 2-dimensional analysis

in the cylindrical coordinate system. A three dimensional analysis will be necessary for

computing the �eld at the ends of the magnet.

Accelerator magnets are designed to produce a well de�ned �eld in the aperture of

the magnets. The �eld in the aperture is constant for dipoles, the �rst derivative of the

�eld is constant for quadrupoles and, in general, the nth derivative is constant for the nth-

order multipole. In the following sections, the current distributions needed to produce such

multipole �elds will be obtained.

2.3.1. Field and Vector Potential due to a Line Current

To compute the magnetic �eld and vector potential due to a single in�nitely long wire,

it is assumed to carry a current I in the z-direction which is perpendicular to the plane of

paper. The �eld outside this wire at a perpendicular distance R from it will be computed.

The cylindrical coordinate system is used to take advantage of the symmetry of the problem.

The magnetic �eld produced by this wire can be directly calculated by using the integral

equation
H
~H � ds = I (Eqs. (2:9)) which gives:

H =
I

2�R
; (2:34)

and in a medium having a relative permeability of �

B =
I��0

2�R
: (2:35)
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The components of vector potential in cylindrical and Cartesian geometry can be written

as

A
z
=
��0I

2�
ln

�
1

R

�
; (2:36a)

A
r
= A

�
= 0; (2:36b)

A
x
= A

y
= 0: (2:36c)

The validity of the above relation is veri�ed when the curl of the vector potential is taken

to obtain the magnetic �eld as per Eqs. (2:7). This gives B
r
= B

z
= 0 and B

�
= ��0I

2�R
;

which is the same as in Eqs. (2:34) with only one component of the �eld present.

In accelerator magnets, the magnetic �eld and vector potential are usually expressed

in terms of harmonic components. To develop this formalism a line current is assumed to

be located at a point \Q" (at ~a) and the magnetic �eld produced by it is computed at

point \P" (at ~r), as shown in Fig. 2.1. The distance between the two is ~R = ~r - ~a with the

magnitude jRj =
p
r2 + a2 � 2racos(� � �).

In this section, the computations will be mostly done in a space free of magnetic material

where the relative permeability � is one. Moreover, to simplify the expressions to follow,

Eq. (2:36a) is re-written after adding a constant :

A
z
(r; �) = �

�
o
I

2�
ln

�
R

a

�
; (2:37)

the addition of such a constant does not change the magnetic �eld which is a derivative of

A
z
.

Now A
z
(r; �) will be given in terms of a series expansion containing, in general, sum-

mation of terms like ( r
a

)
m

and (a
r

)
m

, together with trigonometric functions like cos(m�)

and sin(m�). The exact solution will depend on a particular problem. For example, in the

solution of the case when r approaches the origin (r! 0), the (a
r

)
m

terms can't be present.

Similarly in the solution of the case when r approaches in�nity (r ! 1), the (a
r

)
m

terms

can't be present.

In order to obtain an expansion of the ln in Eq. (2:37), the following manipulation is

carried out :

R2 = r2 + a2 � 2ra cos (� � �) ;
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Figure 2.1: Computation of the �eld at a location \P" produced by the

line current located at a position \Q".

R
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�
=

1
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a

�
ei(���)

�
+
1

2
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�
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�
r
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�
e�i(���)

�
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For jzj < 1, the logarithmic expansion is given by

ln (1� z) = �
�
z +

�
z2

2

�
+

�
z3

3

�
+ :::

�
= �

1X
n=1

zn

n
:

Therefore, for r < a

ln

�
R

a

�
= �

"
1

2

1X
n=1

�
1

n

��
r

a

�
n

ei n(���) +
1

2

1X
n=1

�
1

n

��
r

a

�
n

e�i n(���)

#
;

ln

�
R

a

�
= �

1X
n=1

�
1

n

��
r

a

�
n

cos (n (�� �)) : (2:38)

Substituting Eqs. (2:38) in Eqs. (2:37) the desired expansion for the vector potential is

obtained (for r < a) :

A
z
(r; �) =

�
o
I

2�

1X
n=1

�
1

n

��
r

a

�
n

cos (n (�� �)) : (2:39)

The magnetic �eld components are obtained by using Eqs. (2:7) and Eqs. (2:37) with

A
r
= A

�
= 0 :

B
r
=

1

r

�
@A

z

@�

�
; (2:40a)

B
�
= �

@A
z

@r
; (2:40b)

B
z
= 0: (2:40c)

Therefore, for r < a, one would obtain :

B
r
=

�
o
I

2�a

1X
n=1

�
r

a

�
n�1

sin [(n) (� � �)] ; (2:41a)

B
�
= �

�
o
I

2�a

1X
n=1

�
r

a

�
n�1

cos [(n) (�� �)] ; (2:41b)

B
z
= 0: (2:41c)

In order to compute the harmonics components, the above equations are compared with

Eqs. (2:31). It should be noted that there the summation starts from n = 0 instead of n = 1

in Eq. (2:39). The following expressions for the normal and skew harmonics at a reference

radius R0 are obtained for a line current located at (a; �) :

b
n
= 104

�
R0

a

�
n

cos [(n+ 1)�] ; (2:42a)

a
n
= �104

�
R0

a

�
n

sin [(n + 1)�] ; (2:42b)
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and B
Ro

= ��oI

2�a
.

For r > a case, the following rearrangement is performed to obtain an appropriate

expansion :

R

a
=

�
r

a

��
1�

�
a

r

�
ei(���)

� 1

2

�
�
1�

�
a

r

�
e�i(���)

� 1

2

;

ln

�
R

a

�
= ln

�
r

a

�
+

�
1

2
ln

�
1�

�
a

r

�
ei(���)

�
+
1

2
ln

�
1�

�
a

r

�
e�i(���)

��
;

ln

�
R

a

�
= ln

�
r

a

�
�
"
1

2

1X
n=1

�
1

n

��
a

r

�
n

ei n(���) +
1

2

1X
n=1

�
1

n

��
a

r

�
n

e�i n(���)

#
;

ln

�
R

a

�
= ln

�
r

a

�
�

1X
n=1

�
1

n

��
a

r

�
n

cos (n (�� �)) : (2:43)

Therefore, for r > a, one obtains the following expression for the vector potential :

A
z
(r; �) = ��oI

2�
ln

�
r

a

�
+
�
o
I

2�

1X
n=1

�
1

n

��
a

r

�
n

cos (n (�� �)) : (2:44)

The magnetic �eld components are obtained by using Eqs. (2:40) :

B
r
=

�
o
I

2�a

1X
n=0

�
a

r

�
n+1

sin (n (�� �)) ; (2:45a)

B
�
=

�
o
I

2�a

1X
n=0

�
a

r

�
n+1

cos (n (� � �)) ; (2:45b)

B
z
= 0: (2:45c)

It may be noted that in the expression for B
�
, the summation in n starts from n = 0

instead of n = 1. The (B
x
; B

y
) components of the �eld can be computed using the following

relation:

8>>:B
x

B
y

9>>; =

8>>: cos (�) �sin (�)
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�

9>>;: (2:46)
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2.3.2. Line Current in a Cylindrical Iron Cavity

Expressions are obtained here for the vector potential and magnetic �eld due to an

in�nitely long paraxial �lament of current I at a radius a in a cylindrical cavity having a

radius R
f
> a. The iron is in�nitely long and in�nitely thick and has a constant relative

permeability �, which is referred to here simply as permeability following the convention

explained earlier. The method of image currents can be applied to include the contribution

from the iron 179. The expressions are obtained here by matching the boundary conditions

at the interface of the air and iron boundary 19. General expressions for the vector potential

and the components of the �eld in the region a < r < R
f
, are given by :

A
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and in the region r > R
f
:
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where E
n
and F

n
are coe�cients which can be determined by the boundary conditions at

r = R
f
that

(B
r
)
air

= (B
r
)
iron

;

(H
�
)
air

= (H
�
)
iron

;

i.e. the normal component of B and the azimuthal component of H are continuous. There-

fore, the required boundary conditions at r = R
f
for n 6= 0 gives :
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which gives
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F
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The n = 0 term appears only in the expression for H
�
and on matching the boundary

condition, one obtains :
I

2�R
f

= �
F
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R
f

;

which gives

F
o
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2�
: (2:52)

The expressions for vector potential and �eld components for a < r < R
f
case are

obtained when E
n
from Eq. (2:51a) is substituted in Eq. (2:47) and Eqs. (2:48) :
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In the above equations, the second term in the square brackets is the additional contribution

of the iron to the �eld produced by the coil.

To obtain the expressions for the vector potential and �eld for r < a it must be noted

that a current �lament is present at r = a. However, the radial component of the �eld B
r

must still be continuous, i.e. at r = a

B
r
(in) = B

r
(out) ;

where B
r
(in) and B

r
(out) are the magnetic induction for r < a and a < r < R

f
respectively.

The presence of the source (current), however, gives a discontinuity in the azimuthal com-

ponent of the �eld H
�
with H

�
(in) - H

�
(out) determined by the current density at r = a.

A general expression for the vector potential for r < a is given by (see Eq. (2:39)) :
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where the I
n
are unknown coe�cients. Using Eqs. (2:40) :
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= 0: (2:56c)

In order for B
r
to be continuous at r = a one obtains from Eq. (2:56a) and Eq. (2:54a)

:
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Using this in Eqs. (2:56) gives the expressions for the �eld and vector potential for r < a

as :
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= 0: (2:59c)
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To compute the �eld harmonics the procedure of Eqs. (2:42) is repeated. As before, the

summation over n in the above is now changed so that it starts from n=0 instead of n=1.
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All expressions derived so far reproduce the results obtained from the method of images

179 which says that the e�ect of iron can be replaced by an additional line current I
0

located

at (a
0

; �) with

I
0

=

�
� � 1

� + 1

�
I;

a
0

=
R2
f

a
:

The expressions for vector potential and �eld components for r > R
f
case are obtained

when F
n
from Eq. (2:51b) and Eq. (2:52) are substituted in Eqs. (2:49) and Eqs. (2:50) :
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2.3.3. Line Current in a Cylindrical Iron Shell

In deriving the expressions for the vector potential and �eld due to a line current inside

an cylindrical iron it was assumed in the last section that the iron outer boundary extends

to in�nity. This is, however, not the case in practice. If the outer diameter of the cylindrical

iron shell is R
a
, then the general expressions for the vector potential in the various regions

are given by :
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Following an approach similar to one used in previous section, the �ve coe�cients
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) are obtained by matching the �ve boundary conditions (B
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is con-

tinuous at r = a, r = R
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and B
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is continuous at r = R

f
and r = R
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). The

results of that exercise for n > 0 are given here :
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and for n = 0, the terms are:
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Therefore, the expressions for the vector potential and �eld components in various

regions due to a line current I at (a; �) inside a cylindrical iron shell having inner radius R
f

and outer radius R
a
are given as follows (in each case B

z
(r; �) = 0) :
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Inside Iron (Rf < r < Ra)

A
z
(r; �) = �

��
o
I

2�
ln

�
r

a

�

+
��

o
I

� (�+ 1)

1X
n=1

�
1

n

� 1� ��1

�+1

�
r

Ra

�2n
1�

�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�
n

cos (n (�� �)) ; (2:70)

B
r
=

��
o
I

�a (�+ 1)

1X
n=1

1� ��1

�+1

�
r

Ra

�2n
1�

�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�
n+1

sin (n (�� �)) ; (2:71a)

B
�
=
��

o
I

2�r
+

��
o
I

�a (� + 1)

1X
n=1

1 + ��1

�+1

�
r

Ra

�2n
1�

�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�
n+1

cos (n (�� �)) : (2:71b)

Outside Iron (r > Ra)
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Field Harmonics

The �eld harmonics are given by :
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2.3.4. Field and Harmonics due to Current Blocks in Air

The expressions derived for the line current in the section 1.5.3.1 are extended here for

one or more blocks of current. The geometry of the problem is such that a wire is replaced

by a radial block between radii �1 and �2 and angle �1 and �2. The block has a constant

current density J such that the total current is still I with I = 1

2
J(�22 � �21)(�2 � �1). To

compute the vector potential and component of �eld at (r; �) Eq. (2:36) and Eqs. (2:41)

should be integrated 179 as (for r < �1 ) :
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The integration of the above equations for the vector potential and the �eld components

gives :
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Now the harmonics components a
n
and b

n
(the dimensionless coe�cients as de�ned in

Eqs. (2:31)) are computed due to the �eld from a single current block. It should be noted

that the summation of a
n
and b

n
starts from n = 0 instead of n = 1 in Eq. (2:78). For n > 1

and harmonics normalized to the dipole �eld, the following expressions for the normal and

skew harmonics at a reference radius R
o
are obtained using the procedure of Eqs. (2:42) :
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sin (�2)� sin (�1)
; (2:79a)

a
n
=
�104Rn

0

(n2 � 1)

��
1

�n�12

�
1

�n�11

�
=(�2 � �1)

�

cos ((n + 1)�2)� cos ((n+ 1)�1)

sin (�2)� sin (�1)
; (2:79b)

and the harmonic expressions for n = 1 are

b
n
=

104R0ln
�
�2

�1

�
�2 � �1

sin (2�2)� sin (2�1)

sin (�2)� sin (�1)
; (2:80a)

a
n
=

104R0ln
�
�2

�1

�
�2 � �1

cos (2�2)� cos (2�1)

sin (�2)� sin (�1)
: (2:80b)

To compute A
n
and B

n
(having the dimensions of �eld and de�ned in Eqs. (2:21)) one

derives the expressions for �eld components from Eqs. (2:78) at a reference radius R
o
in the

form of :

B
r
=

1X
n=1

�
r

R
o

�
n�1

[B
n
sin (n�) + A

n
cos (n�)] ; (2:81a)

B
�
=

1X
n=1

�
r

R
o

�
n�1

[B
n
cos (n�) � A

n
sin (n�)] ; (2:81b)

to obtain

A1 = �
�
o
J

2�
(�2 � �1) [cos (�2)� cos (�1)] ; (2:82a)

A2 = �
�
o
JR

o

2�
ln

�
�2

�1

�
[cos (2�2)� cos (2�1)] ; (2:82b)

for n � 3

A
n
=
�
o
J

2�

Rn�1
o

n (n � 2)

�
1

�n�22

�
1

�n�21

�
[cos (n�2)� cos (n�1)] ; (2:82c)
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and

B1 = �
�
o
J

2�
(�2 � �1) [sin (�2)� sin (�1)] ; (2:83a)

B2 = �
�
o
JR

o

2�
ln

�
�2

�1

�
[sin (2�2)� sin (2�1)] ; (2:83b)

for n � 3

B
n
=
�
o
J

2�

1X
n=3

Rn�1
o

n (n� 2)

�
1

�n�22

�
1

�n�21

�
[sin (n�2)� sin (n�1)] : (2:83c)

In a typical superconducting magnet several current blocks are used to generate the

desired multipolar �eld. In order to compute the harmonics due to several current blocks,

the �eld and �eld harmonics A
n
and B

n
(coe�cients having the dimension of �eld) can be

directly superimposed. However, a
n
and b

n
(dimensionless coe�cients) can not be directly

added and they must be obtained from A
n
and B

n
as follows :

b
n
= 104

P
k
(B

n+1)
kP

k
(B

m+1)
k

; (2:84a)

a
n
= 104

P
k
(A

n+1)
kP

k
(B

m+1)
k

; (2:84b)

where the summation k is carried over all k blocks with the kth block carrying a current

density of J
k
and located between radii �1k and �2k and angles �1k and �2k. The A

n
and

B
n
for each current blocks are computed using the expressions given above. The harmonics

are de�ned such that the fundamental harmonic b
m
is normalized to 104.

The �eld components outside a current block (r > �2) are obtained similarly by inte-

grating Eqs. (2:78) and the results are given below

B
r
(r; �) = �

�
o
J

2�

1X
n=1

�n+12 � �n+11

n (n+ 2) rn+1
[cos (n (�2 � �))� cos (n (�1 � �))] ; (2:85a)

B
�
(r; �) =

�
o
J

2�

1X
n=1

�n+12 � �n+11

n (n+ 2) rn+1
[sin (n (�2 � �))� sin (n (�1 � �))] : (2:85b)

The �eld inside a current block (�1 < r < �2) can be obtained by dividing the current

block in two parts (a) from radius �1 to radius r and (b) from radius r to radius �2. Then

the superimposition principle can be used to determine the �eld components with the (a)

part evaluated from Eqs. (2:78) with �2 replaced by r and the (b) part from Eqs. (2:85)

with �1 replaced by r.
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2.3.5. Field Harmonics due to Current Blocks in a Cylindrical Iron Shell

As shown in a previous section (Eqs. (2:67) for r < a), the expressions for the �eld

component due to current blocks get modi�ed when they are placed inside an iron shell

having an iron inner radius of R
f
and outer radius of R

a
. The harmonic coe�cients A

n
and

B
n
are enhanced by :

K
n
=

"
1 +

�� 1

�+ 1

�
a

R
f

�2n#
�
1�

�
Rf

Ra

�2n�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2n� ;

To give

A
0

n
= K

n
�A

n
;

and

B
0

n
= K

n
�B

n
:

The harmonics coe�cients a
n
and b

n
given in Eqs. (2:84) are modi�ed to :

b
n
= 104

P
k
(K

n+1 B
n+1)

kP
k
(K

m+1 B
m+1)

k

(2:86a)

a
n
= 104

P
k
(K

n+1 A
n+1)

kP
k
(K

m+1 B
m+1)

k

(2:86b)
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2.3.6. COS(m�) Current Distribution for Ideal Fields

In this section, it is demonstrated that an ideal 2m (m=1 for dipole) multipolar �eld

shape in accelerator magnets can be produced by a COS(m�) current distribution. In the

last section the expressions for the �eld and vector potential produced by a line current were

obtained. The �eld in the cross section of the magnet can be described by superimposing

the �eld produced by a large number of such wires.

A cylindrical current sheet 12�18 at a radius of a is shown in Fig. 2.2, where the angular

current density I(�) in Amperes=radian as a function of angle � is given by the relation

I (�) = I
o
cos (m�) : (2:87)

[In the case of skew harmonics the current distribution is I(�) = I
o
sin(m�)].

It will be demonstrated that a pure dipole �eld is created by m=1, quadrupole by m=2,

sextupole by m=3, etc. The total current required (Ampere-turns) per pole for generating

a 2m-pole �eld is given by

I
pole

=

Z
�=2m

o

I
o
cos (m�) d� =

I
o

m
:

In Eqs. (2:39), the vector potential produced by a single wire at any position is com-

puted. To obtain the vector potential at (r; �) inside the sheet (i.e. r < a), the expression

is integrated over �

A
z
(r; �) =

�
o
I
o

2�

1X
n=1

�
1

n

��
r

a

�
n
Z 2�

o

cos (m�) cos (n (�� �)) d�; (2:88)

to obtain

A
z
(r; �) =

�
o
I
o

2m

�
r

a

�
m

cos (m�) ; (2:89)

where the following trigonometric relations have been used

cos [n (�� �)] = cos (n�) cos (n�) + sin (n�) sin (n�) ; (2:90)

Z 2�

o

cos (m�) cos (n�) d� = ��
m;n

; (2:91a)

Z 2�

o

cos (m�) sin (n�) d� = 0: (2:91b)
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Figure 2.2: Computation of the �eld at (r; �) produced by a current

sheet at a radius a in which the current density varies as a function of

angle given by I(�) = I
o
cos(m�).

The �eld components inside the current sheet are obtained by using Eqs. (2:40)

B
�
(r; �) = ��oIo

2a

�
r

a

�
m�1

cos (m�) ; (2:92a)

B
r
(r; �) = �

�
o
I
o

2a

�
r

a

�
m�1

sin (m�) ; (2:92b)
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B
z
(r; �) = 0: (2:92c)

It may be noted that the magnitude of the �eld jBj is independent of �. On using

Eqs. (2:46)

B
x
(r; �) = �

�
o
I
o

2a

�
r

a

�
m�1

sin ((m� 1) �) ; (2:93a)

B
y
(r; �) = �

�
o
I
o

2a

�
r

a

�
m�1

cos ((m� 1) �) : (2:93b)

For the m=1 case, this generates a pure dipole �eld, as the �eld components fromEqs. (2:92)

reduce to

B
�
(r; �) = �

�
o
I
o

2a
cos (�) ;

B
r
(r; �) = �

�
o
I
o

2a
sin (�) ;

and, from Eqs. (2:93)

B
x

= 0; (2:94a)

B
y

= �
�
o
I
o

2a
: (2:94b)

This implies that a cylindrical current sheet with a cosine � current distribution would create

a uniform vertical �eld inside it. This basic result is widely used in designing supercon-

ducting accelerator dipole magnets, although the actual current distribution is somewhat

modi�ed for practical reasons.

Likewise, for m=2, a pure quadrupole �eld is generated

B
�
(r; �) = �

�
o
I
o
r

2a2
cos (2�) ;

B
r
(r; �) = ��oIor

2a2
sin (2�) ;

and, from Eqs. (2:93)

B
x
= g y; (2:95a)

B
y
= g x; (2:95b)

with g = �(�
o
I
o
)=(2a2).
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Similarly, for m=3, a pure sextupole �eld is generated

B
�
(r; �) = �

�
o
I
o
r2

2a3
cos (3�) ;

B
r
(r; �) = �

�
o
I
o
r2

2a3
sin (3�) ;

and, from Eqs. (2:93)

B
x
= 2S x y; (2:96a)

B
y
= S

�
x2 � y2

�
; (2:96b)

with S = �(�
o
I
o
)=(2a3).

In general, a cos(m�) current distribution gives a 2m order multipole with �eld com-

ponents given by Eqs. (2:93).

On the x-axis (midplane), � = 0, these components become

B
x
(x; 0) = 0; (2:97a)

B
y
(x; 0) = �

�
o
I
o

2a

�
x

a

�
m�1

; (2:97b)

and on the y-axis

B
x
(0; y) = 0; for m = 1; 3; 5; :::

= �
�
o
I
o

2a

�
y

a

�
m�1

; for m = 2; 4; 6; ::: (2:98a)

B
y
(0; y) = �

�
o
I
o

2a

�
y

a

�
m�1

; for m = 1; 3; 5; :::

= 0: for m = 2; 4; 6; ::: (2:98b)

To obtain the �eld outside the current sheet (r > a), Eqs. (2:44) is integrated using the

trigonometric relations given in Eq. (2:90)and Eqs. (2:91)

A
z
(r; �) = �

�
o
I
o

2�
ln

�
r

a

�Z 2�

o

cos (m�) d�

+
�
o
I
o

2�

1X
n=1

�
1

n

��
a

r

�
n
Z 2�

o

cos (m�) cos (n (� � �)) d�;

therefore; A
z
(r; �) =

�
o
I
o

2m

�
a

r

�
m

cos (m�) : (2:99)
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The �eld components for r > a are obtained using Eqs. (2:40)

B
�
(r; �) =

�
o
I
o

2a

�
a

r

�
m+1

cos (m�) ; (2:100a)

B
r
(r; �) = �

�
o
I
o

2a

�
a

r

�
m+1

sin (m�) ; (2:100b)

B
z
(r; �) = 0; (2:100c)

and the (B
x
; B

y
) components of the �eld are obtained as :

B
x
= B

r
cos (�) � B

�
sin (�) ;

and

B
y
= B

r
sin (�) + B

�
cos (�) ;

therefore,

B
x
= �

�
o
I
o

2a

�
a

r

�
m+1

sin [(m+ 1) �] ; (2:101a)

B
y
=
�
o
I
o

2a

�
a

r

�
m+1

cos [(m+ 1) �] : (2:101b)

In the case of the dipole (m=1), the �eld components outside the current sheet, fall as

1

r
2
, and are given by :

B
�
(r; �) =

�
o
I
o
a

2r2
cos [�] ; (2:102a)

B
r
(r; �) = �

�
o
I
o
a

2r2
sin [�] ; (2:102b)

B
x
(r; �) = �

�
o
I
o
a

2r2
sin [2�] ; (2:102c)

B
y
(r; �) =

�
o
I
o
a

2r2
cos [2�] : (2:102d)

In deriving the above expressions, for simplicity it is assumed that the current is local-

ized in a sheet. However, in accelerator magnets, the current is present between two radii

a1 and a2. It is assumed that the current density in Amperes/m2 is given by

J (�) = J
o
cos (m�) :

For a sheet of in�tesimal thickness da, J
o
is related to the angular current density (I

o
) as

I
o

= J
o
a da;
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In this case the expression for the vector potential and �eld components for r < a are by

integrating Eqs. (2:39):

A
z
(r; �) =

�
o
J
o

2�

1X
n=1

�
rn

n

�Z
a2

a1

1

an
a da

Z 2�

o

cos (m�) cos (n (�� �)) d�;

Therefore,

A
z
(r; �) =

�
o
J
o
rm

2m
cos (m�)

Z
a2

a1

1

am�1
da; (2:103)

B
�
(r; �) = �

�
o
J
o
rm�1

2
cos (m�)

Z
a2

a1

1

am�1
da; (2:104a)

B
r
(r; �) = �

�
o
J
o
rm�1

2
sin (m�)

Z
a2

a1

1

am�1
da; (2:104b)

B
z
(r; �) = 0: (2:104c)

Except for m = 2 case (the quadrupole case, for which the expressions are given later),

one obtains :

A
z
(r; �) =

�
o
J
o
a1

2

2m (m� 2)
cos (m�)

�
r

a1

�
m

 
1�

�
a1

a2

�
m�2

!
; (2:105)
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o
J
o
a1

2 (m� 2)
cos (m�)

�
r

a1

�
m�1

 
1�

�
a1

a2

�
m�2

!
; (2:106a)

B
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�
o
J
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2 (m� 2)
sin (m�)

�
r
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�
m�1

 
1�

�
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�
m�2

!
; (2:106b)

B
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(r; �) = �

�
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J
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�
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�
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!
; (2:106c)

B
x
(r; �) = �

�
o
J
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2 (m� 2)
sin ((m� 1) �)

�
r

a1

�
m�1

 
1�

�
a1
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�
m�2

!
: (2:106d)

In the case of the dipole (m=1), this gives a vertical �eld

B
y
= ��

o
J
o

�
a2 � a1

2

�
= ��

o
J
o

�
�a

2

�
:

For m = 2 (quadrupole), the integration of Eqs. (2:104) gives :

A
z
(r; �) =

�
o
J
o
r2

4
cos (2�) ln

�
a2

a1

�
(2:107)

B
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(2:108a)
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(2:108b)
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(2:108c)
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J
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sin (�) ln
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�
(2:108d)
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If the sheet thickness �a = a2 � a1 is very small compared to the the average radius

�a = (a2+a1)

2
, then the expressions in Eqs. (2:106) for r < a may be simpli�ed to the fol-

lowing equations since the integral in Eq. (2:103) and Eqs. (2:104) can be approximated as

(�a=�am�1) :

A
z
(r; �) =

�
o
J
o
r�a

2m

�
r

�a

�
m�1

cos (m�) ; (2:109)

B
�
(r; �) = �

�
o
J
o
�a

2

�
r

�a

�
m�1

cos (m�) ; (2:110a)

B
r
(r; �) = ��oJo�a

2

�
r

�a

�
m�1

sin (m�) : (2:110b)
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2.3.7. COS(m�) Current Distribution in a Cylindrical Iron Shell

In superconducting accelerator magnets, the coils are frequently placed inside a cylin-

drical iron yoke to (a) reduce the stray magnetic �eld outside the magnet and (b) as an

added bene�t to enhance the �eld in the aperture of the magnet. Due to the non-linear

properties of the iron, the fraction of �eld generated by the iron at any current depends

on how much the yoke is magnetized. This is too complex a problem to solve analytically.

However, one can obtain simple expressions if one assumes that the permeability (�) of the

iron is constant everywhere in the yoke. Expressions for the vector potential and the �eld

are given for the case in which a COS(m�) current sheet at radius a is inside in an iron

shell with inner radius of R
f
and outer radius of R

a
.

In this case, the method of matching the boundary conditions at the air and iron

interfaces, as described in the last section, can be used to include the contribution from the

iron. This is equivalent to the method of images when the e�ect of the iron is replaced by

the equivalent image currents.

In the presence of a cylindrical iron yoke, the vector potential and the �eld components

given in Eqs. (2:89) and Eqs. (2:92), for r < a, are modi�ed to

A
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(r; �) =
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3
775 ; (2:111)
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775 : (2:112b)
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The other components are obtained using Eqs. (2:46)
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B
y
(r; �) = �

�
o
I
o

2a
cos ((m� 1) �)

�
r

a

�
m�1

�
2
6641 + �� 1

�+ 1

�
a

R
f

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
3
775 ; (2:113b)

B
z
(r; �) = 0: (2:113c)

Similarly, the vector potential and �eld outside the current sheet but inside the iron,

i.e. a < r < R
f
, is given by :

Between Coil and Iron (a < r < Rf)
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Inside Iron (Rf < r < Ra)
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2.3.8. Intersecting Circles with a Constant Current Density for Ideal Fields

It has been shown 137 that a pure dipole �eld can be created simply by two intersecting

circles carrying constant current densities in opposite directions. To demonstrate this, the

�eld is evaluated inside and outside a circular conductor with a radius a and carrying

a constant current density J in the direction of the axis (perpendicular to the plane of

paper). For a radius R > a (outside the conductor), Ampere's law gives

2�R �H = �a2 J:

Therefore,

H =
Ja2

2R
: (2:120)

The direction of the magnetic �eld is azimuthal, with (x; y) components of the �eld at any

point outside the conductor given by

H
x
= �

Ja2

2R
sin (�) = �

J

2

�
a

R

�2
y;

H
y
=
Ja2

2R
cos (�) =

J

2

�
a

R

�2
x:

The �eld inside the conductor (R < a) can be obtained as

2�R �H = �R2 J;

i:e:; H =
JR

2
: (2:121)

with the components of the �eld being given by

H
x
= �

J

2
R sin (�) = �

J

2
y;

H
y
=
J

2
R cos (�) =

J

2
x:

Now expressions will be derived for the �eld produced by the conductors in two inter-

secting circles. The coordinate system is de�ned such that the x-axis passes through the

centers of the two circles with the origin of the new coordinate system (x
0

; y
0

) being in the

middle of the two. The distance between the centers of the two circles is s with circle 2 to

the right such that x
0

= x1 � s

2
= x2 +

s

2
and y1 = y2 = y

0

. The direction of the current
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Figure 2.3: This �gure shows the two intersecting circles of equal size

with one carrying a current with a constant density J = �J
o
and the other

J = J
o
. The two circles are separated by a distance s. In the intersection

region of the two circles, the net current density is zero and therefore it

can be replaced by a current free region. It is demonstrated that this

con�guration produces a vertical dipole �eld given by Jo

2
s.

is opposite in the two circles, with constant current densities J1 and �J2 respectively. The

components of the �eld inside the region created by the two intersecting circles can be
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computed by superimposing the �eld produced by the conductors in the two circles

H
x
=
y

0

2
(J2 � J1) ;

H
y
=
x

0

2
(J1 � J2) +

s

4
(J1 + J2) :

A special case comes when the magnitude of the current densities in the two circles

is J
o
but the direction is opposite as shown in Fig. 2.3. This means that the intersection

region is a current free region which can be used as an aperture for the particle beam and

and the aperture has a constant vertical magnetic �eld given by H
y
= Jo

2
s.

It can be shown 14 that four intersecting circles create a quadrupole �eld and in general

2m intersecting circles create a 2m-order multipole. The treatment has been also been

extended to ellipses by a number of authors (see for example Beth 14).
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2.4. Complex Variable Method in 2-d Magnetic Field Calculations

The method of complex variable is found very useful in deriving many expressions in

superconducting magnets. 12�18;81 These methods can be applied to 2-dimensional �eld

computations, which is the case for the most part of long superconducting magnets. Mills

and Morgan 115 have shown that the complex method can also be extended throughout the

ends, however, to the �eld integral (
R
B:dz). The complex variables have two parts (real

and imaginary) and the following variables will be used :

z = x + i y; (2:122a)

H (z) = H
y

+ i H
x
; (2:122b)

B (z) = B
y

+ i B
x
; (2:122c)

W (z) = � (A + i �) + constant: (2:122d)

where W is the complex potential having � and A (scalar and vector potentials) as the two

components, and i =
p
�1. z� is the complex conjugate of z with

z� = x � i y:

In the 2-d case the following relations are valid :

B
x
=
@A

@y
(2:123a)

B
y
= �@A

@x
; (2:123b)

with B
x
= �0�Hx

;

and B
y
= �0�Hy

:

Moreover, in air (� = 1),

H
x
= � 1
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@�
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@y
; (2:124a)

H
y
= � 1

�0

@�

@y
= � 1

�0

@A

@x
: (2:124b)

The Cauchy-Riemann equations are the necessary and su�cient conditions for a func-

tion to be analytic in Z-plane. For a function F
w

= u + i v, these conditions are:

@u

@x
=

@v

@y
; (2:125a)

@u

@y
= �

@v

@x
: (2:126a)
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In a medium free of magnetic material with � = 1, Eqs. (2:124) gives

@A

@x
=

@�

@y
;

@A

@y
= �

@�

@x
;

which are the Cauchy-Riemann conditions for W (z) = �(A+ i�)+constant to be analytic.

In the same way, B(z) (and similarly H(z)) is analytic if :

@B
y

@x
=

@B
x

@y
;

@B
y

@y
= �

@B
x

@x
;

which are just Maxwell's equations in a current free region. It may be noted that the choice

of variable B(z) as B(z) = B
y
+ iB

x
is important since B

x
and B

y
do not the satisfy the

Cauchy-Rieman conditions if the variable is B
x
+ iB

y
.

Since W (z) is analytic, the derivative of W (z) gives the the complex �eld function :

dW

dz
= �

@A

@x
� i

@�

@x
= i

@A

@y
�
@�

@y
= H

y
+ i H

x
= H (z) :

To deal with a region with current, a new analytic function is de�ned as follows :

F (z) = B (z)�
1

2
�
o
Jz� = (B

y
� 1

2
�
o
Jx) + i (B

x
+ 1

2
�
o
Jy) ; (2:127)

where the current density J is constant throughout the region. The Cauchy-Riemann

conditions become :
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which are Maxwell's equations in the presence of current.
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2.4.1. Field due to an array of Line Currents

The complex potential at a point z, due a current 
owing in a direction perpendicular

to the Z-plane at z = z
o
, is given by :

W (z) =
I

2�
log (z � z

o
) + constant ;

and the magnetic �eld is given by :

H (z) =
dW

dz
=

I

2� (z � z
o
)
: (2:128)

The direction of the �eld is that of (z � z
o
)�, which is perpendicular to the vector (z � z

o
).

The superposition principle can be used to obtain the �eld due to n �laments with the kth

�lament carrying I
k
amperes and located at z = z

k
:

H (z) =
nX

k=1

I
k

2� (z � z
k
)
: (2:129)

Cauchy's Residue Theorem gives 29

I
C

f (z) dz = 2�i
X
k

Res (a
k
); (2:130)

where Res(a
k
) are the residues which are de�ned as the coe�cients of 1

z�zk

inside the contour

C over which the contour integral of the function f(z) is taken. Applying this to Eq. (2:129)

while taking the contour integral of the �eld around the wires in the Z-plane, one obtains

I
H (z) dz = i

nX
k=1

I
k
: (2:131)

which is basically Ampere's law.

The Cauchy integral formula 29 gives :

f (z
o
) =

1

2�i

I
C

f (z)

(z � z
o
)
dz; (2:132)

where the function f(z) is analytic everywhere within and on a closed contour C and f(z
o
)

is the value of f(z) at z = z
o
.
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2.4.2. Beth's Current Sheet Theorem

Beth's \Current Sheet Theorem" 12�18 can be derived from Eq. (2:131). As shown in

Fig. 2.4 the current sheet is made up of a number of �laments carrying a total current �I

perpendicular to the Z-plane along the curve from z to z + �z. A contour integral on a

closed path enclosing the current sheet will give

I
H (z) dz = i �I:

Now if the path is squeezed from the right and left sides (indicated by the subscripts R and

L) on to the current sheet, then in the limiting case one obtains

H
R
(z

o
) � H

L
(z

o
) = i

dI

dz
; (2:133)

where H
R
(z

o
) and H

L
(z

o
) are the limits of the analytic functions H

R
(z) and H

L
(z) when

z approaches z
o
from the right and left and dI

dz

is the limit of �I
�z

when �z approaches 0 at

any z.

The above equation Eqs. (2:133) is called Beth's current sheet theorem. To obtain

another equation in potential form this equation is integrated to give

W
R
(z

o
) � W

L
(z

o
) = i I + Constant ; (2:134)

where W
R
(z

o
) and W

L
(z

o
) are the limits of the analytic functions W

R
(z) and W

L
(z) when

z approaches z
o
from the right and left.
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Figure 2.4: Beth's current sheet is shown here, which is made up of

a number of �laments, carrying a total current �I perpendicular to the

Z-plane along the curve from z to z+�z. The sub-script \R" denotes the

right side and \L" denotes the left side to the sheet.
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2.4.3. Example { Cos(m � ) current distribution

As an example of use of the complex variable methods, expressions are derived here for

the �eld due to a cylindrical current sheet at a radius r = a, as shown in Fig. 2.2. An

angular current density distribution, mentioned earlier, is :

dI

d�
= I

o
cos (m�) :

In complex coordinates, the above current sheet is located at z = a ei�. Then,

dI

dz
=

�
dI

d�

�
=

�
dz

d�

�
=
I
o
cos (m�)

i a ei�
:

Since H(z) is analytic both inside and outside the current sheet, a general expression

for the �eld to remain �nite inside the current sheet (r < a) is H
in

=
P

n
a
n
zn and for

outside the current sheet (r > a) is H
out

=
P

n
b
n
z�n. To obtain the coe�cients a

n
and b

n
,

the �elds (H
in
) and (H

out
) are linked using Beth's current sheet theorem (Eqs. (2:133)) as

follows :

H
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� H
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I
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h
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#
:

The right hand side of the above equation gives the �eld on the current sheet and it acts

as a boundary condition which must match interior and exterior solutions. Hence a
n
=0 for

n 6=m-1 and b
n
=0 for n6=m+1, giving

H
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�I

o

2 a

�
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�
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jzj < a;

H
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=
I
o

2 a

�
a

z

�
m+1

jzj > a:
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3. SSC 50 mmAperture Collider Dipole Magnet Cross-section

In this section the magnetic design of the two dimensional coil and iron cross section

for the prototype 50 mm aperture main ring dipole magnet for the Superconducting Super

Collider (SSC) is presented. Several prototype dipole magnets based on this design have

been built at Brookhaven National Laboratory (BNL) and at Fermi National Accelerator

Laboratory (FNAL). Except for a few minor di�erences (which will be discussed in more

detail later), the magnetic design of the BNL and FNAL magnets is nearly the same.

The computed values of the allowed �eld harmonics as a function of current, the quench

performance predictions, the stored energy calculations, the e�ect of construction errors on

the �eld harmonics and the Lorentz forces on the coil will be discussed. The yoke has been

optimized to reduce the e�ects of iron saturation on the �eld harmonics. A summary of

this design will also be presented.

3.1. Coil Design

The coil is made of two layers of superconducting cables. Some parameters of the cables

used in the inner and outer layers are given in Table 3.1.

The coil is designed by placing the cables in such a way that they produce a �eld with a

high degree of uniformity. This is done using the computer program PAR2DOPT 130 which

uses analytic expressions for computing the �eld harmonics at the center of the magnet of

coils in a circular 1� iron aperture. It also computes the peak �eld on the surface of the

conductor.

A large number of con�gurations for the coil design were examined. The one selected

has a total of 45 turns in each quadrant in two layers. The inner layer has 19 turns in four

blocks (three wedges) and the outer has 26 turns in two blocks (one wedge). In the �nal

selection of the optimized coil cross section, the peak �eld (the maximum magnitude of

the magnetic �eld in the conductor) was also used as an important parameter in addition

to the other magnetic and mechanical parameters. For the same transfer function, a coil

design with a lower peak �eld will produce a magnet which will quench at a higher current.

In a search for the optimum coil con�guration, the number of wedges in the outer layer
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Table 3.1: Properties of the cables used in the SSC 50 mm dipoles. J
c

gives the value of the critical current density which was used in the design
calculations for the superconducting part of the wires (strands) and cables.

Cable parameters Inner layer Outer Layer

Filament diameter, micron 6.0 6.0

Strand diameter, mm 0.808 0.648

Strand J
c
(5T; 4:2K), A=mm2 2750 2750

No. of strands 30 36

No. of strands � Strand Area, mm2
15.382 11.872

(area of metal)

Cable J
c
(5T; 4:2K), A=mm2 2612.5 2612.5

Cable width, bare, mm 12.34 11.68

Cable width, insulated, mm 12.51 11.85

Cable mid-thickness, bare, mm 1.458 1.156

Cable mid-thickness, insulated, mm 1.626 1.331

Cable area, bare, mm2 17.99 13.50

Cable area, insulated, mm2 20.34 15.77

Keystone, (max-min) thickness, mm 0.262 0.206

was kept at one whereas for the inner layer, solutions with a variable number of wedges

were examined. The designs with two wedges in the inner layer were, in general, found to

have a higher peak �eld or excessive harmonic content. For this reason, the design chosen

has three wedges in the inner layer. However, the present coil is optimized in such a way

that the two wedges nearest to the pole in the inner layer are identical and symmetric.

A symmetric wedge design has a lower chance of incorrect installation as compared to a

non-symmetric wedge design. The �nal design with symmetric wedges has performance

comparable to those that did not require the wedges to be symmetric. The wedge in the
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outer layer is close to symmetric and in fact, in magnets built at FNAL this wedge was also

made mechanically symmetric, without changing its e�ective size in the coil.

The cross section of the optimized coil placed in the stainless steel collar is shown in

Fig. 3.1.

3.2. Low Field Harmonics

The iron aperture is not completely circular in this magnet. It has a pole notch and a

small vertical straight face at the midplane. These features introduce small but noticeable

values of the b2 and b4 harmonics. These harmonics should be cancelled in the coil design

if the magnet is to produce zero low �eld harmonics. Therefore, to cancel the e�ects of the

non-circular iron inner radius, -0.28 unit of b2 and +0.01 of b4 were desired in the optimized

coil. In addition, a non-zero value of b8 harmonic was desired for centering the coil during

the �eld measurements. Since the given tolerance in b8 was 0.05 unit at the time of design,

a solution was sought which had a magnitude for this harmonic between 0.04 and 0.05.

This requirement on b8 eliminated many coil con�gurations from contention. However, the

�nal design that satis�ed all of the above requirements was equal in performance to those

that did not. An alternate cross section with a zero b8 harmonic was also designed which

was mechanically very close to this cross section and, moreover, had all wedges perfectly

symmetric. However, no magnet was ever built with this alternate cross section.

In Table 3.2 the desired and optimized values of �eld harmonics are presented. Har-

monics higher than b12 had an optimized value of < 0.001, as desired. In the row labelled

\Desired" the allowed systematic errors are also listed. In the row \BNL magnets", the

harmonics include the e�ects of the pole notch and the 
at face in the iron at the midplane.

These would be the expected values of low �eld harmonics in this magnet, not including the

contributions from persistent currents in the superconductor. The size of the cable used in

the actual magnets was di�erent (inner layer cable wider and outer layer cable thinner) by

a small amount from that assumed in the original design. This produced noteworthy devi-

ations in the three lowest allowed �eld harmonics. The last two rows of the table, \Revised

BNL" and \Revised FNAL", refer to the values of �eld harmonics in the magnet after this

change in the cable size.
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Figure 3.1: The cross section of the optimized coil for the prototype SSC

50 mm main collider dipole magnet. The coil is shown inside the stainless

steel collar, which provides the compression on the coil.
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Table 3.2: Desired and Optimized values of low �eld harmonics with

a circular aperture. The harmonics in \BNL magnets" include the

e�ects of the pole notch and a 
at face in the iron at the midplane.

These harmonics are in units of 10�4 at 10 mm reference radius.

The last two rows include the e�ects of a change in cable size.

Values b2 b4 b6 b8 b10 b12

Desired -.28�:4 .01�:1 0�:05 �.045�.05 0�:05 0�:05

Optimized -0.280 0.009 -0.004 0.044 0.014 -0.001

BNL magnets 0.000 -0.001 -0.004 0.044 0.014 -0.001

Revised BNL 1.566 0.070 -0.024 0.043 0.015 -0.001

Revised FNAL 0.165 0.073 -0.021 0.043 0.015 -0.001

A small di�erence in the \Revised BNL" and \Revised FNAL" harmonics is due to the

fact that (a) the pole angle in the outer layer of the FNAL cross section is 10 mil (0.254 mm)

smaller than in the BNL version (the wedge size was the same therefore the e�ective cable

thickness in the coil was reduced) and (b) the notch in the aperture of the vertically split

iron is at the midplane and in the horizontally split iron is at the pole. The normalization

or reference radius (R0) for the �eld harmonics is 10 mm and as usual the harmonics are

given in units 10�4 of the central �eld.

3.3. Iron Yoke Design

In this section, the process used in designing the iron yoke is discussed. The iron

contributes about 22% to the magnetic �eld at 6.7 tesla (somewhat higher at lower �eld).

Since the magnetization of the iron is not a linear function of the current in the coil and varies

throughout the cross section, the uniformity of the �eld becomes a function of the current

in the coil. The yoke is optimized to produce a minimum change in the �eld harmonics

due to iron saturation for the maximum achievable value of transfer function at 6.7 tesla.

The results of �eld computations with the computer codes POISSON and MDP will be

presented here. The computer model of the �nal design and the results of �eld calculations
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with POISSON will be discussed in more detail. An iron packing factor of 97.5% has been

used in these calculations.

If no special technique for controlling iron saturation were used, the change in the b2

harmonic due to iron saturation would be over 1 unit. The following three options were

considered for reducing the b2 saturation swing. They all try to control the iron saturation

at the iron aperture so that it saturates evenly.

� Reduced (shaved) iron o.d.

� Stainless Steel (non-magnetic) key at the midplane

� Shim at the iron inner surface

The �rst scheme, though most straight forward, produces a larger loss in transfer func-

tion at 6.7 tesla than the other two schemes. The third scheme, though actually increasing

the transfer function at 6.7 tesla due to extra iron, requires more engineering development

due to its non-circular aperture. The second scheme produces very little loss in transfer

function (0.3% at 6.7 tesla compared to a keyless or magnetic key version) for a compara-

tively large reduction in b2 due to saturation (3
4
unit). Moreover, it has the advantage of

giving a way to control the b2 due to saturation by changing the location and/or size of

the key without a�ecting the other parts of the magnet design. It may be pointed out that

besides the change due to iron saturation, b2 and the other harmonics are also a function

of current because of the coil deformation due to Lorentz forces. This has been observed in

several SSC 40 mm aperture dipole magnets 64. If the measured change in the b2 harmonic

is more than desired (either due to saturation or due to coil motion due to Lorentz forces),

then this could be a useful and convenient method of correction.

The cross section of the cold mass (coil, collar and yoke) for the BNL-built SSC 50 mm

prototype dipole is shown in Fig. 3.2. The POISSON model of this optimized cross section

is given in a previous chapter as Fig. @Fg.ssc-50mm-model@. The cross section for the

vertically split iron used by FNAL is shown in Fig. 3.3. The �eld lines at 6500 ampere are

also shown in this �gure. The iron i.d. is 135.6 mm; leaving a space of 17 mm for the collar,

and the iron o.d. is 330.2 mm. The stainless steel key in the horizontally split yoke design

is located at 91.4 mm and has a size of 12.7 mm � 12.7 mm. In the vertically split design

for the FNAL-built magnet, a cutout at the horizontal midplane is incorporated to reduce
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iron saturation. The size and location of this cutout is the same as in the BNL yoke. As

mentioned earlier, the iron aperture is not completely circular. The BNL yoke has a pole

notch of size 5.11 mm � 2.67 mm and a vertical straight face at the midplane which starts

at x = 67:13 mm. The FNAL yoke has both the notch at the midplane and a vertical face

at the midplane. The FNAL yoke has an additional pin located below the bus slot. This pin

is made of non-magnetic steel and produces a noticeable e�ect on iron saturation. Other

features in the two yokes are shown in the above mentioned �gures.

The computed transfer function (T.F.) and b2 as a function of current in the BNL and

FNAL magnets are listed in Table 3.3. The b2 harmonic has been adjusted so that it starts

from zero; a non-zero value is arti�cial and is related to the way the computer model of a

given coil and the iron geometry is set up in the two codes. The maximum computed b2 due

to saturation is about 0.3 unit. The calculations presented here, however, do not include

the e�ects of the cryostat wall which modi�es the current dependence of the harmonics

at high current. POISSON uses a generalized �nite di�erence method whereas MDP uses

an integral method. Despite the fact that these two programs use two di�erent methods

for solving the problem, it is encouraging to see that both predict a small saturation shift.

Similar calculations have been made by Kahn 64 with the computer code PE2D which uses

the �nite element method and good agreement has been found with the above calculations.

The maximum change in the b2 and b4 harmonics and the drop in transfer function,

�(TF ), at 6.6 tesla (as compared to its value at low �eld) due to iron saturation as computed

by these codes are listed in Table 3.4. All higher harmonics remain practically unchanged. In

the case of the FNAL yoke, the computations have been done only with the code POISSON.

In Table 3.5 the results of POISSON calculations are presented for various values of

current in the BNL design. In Fig. 3.4, the variation in �eld harmonics as a function of

central �eld is plotted.

The coldmass (see Fig. 3.2) is placed in the cryostat. To provide the maximum space

for the support posts which minimizes the heat leak, the cold mass is placed above the

center of the cryostat, which breaks the top-bottom symmetry. At high �eld, when the �eld

lines can not be contained in the iron yoke, the cryostat provides an extra return path for


ux. A top-bottom asymmetry in the magnet structure is then seen in the magnetic �eld.



SSC 50 mm Aperture Collider Dipole Magnet Cross-section 68

Figure 3.2: The cross section of the cold mass of 50 mm aperture hor-

izontally split iron SSC arc dipoles. This cross section has been used in

BNL built prototype magnets for SSC. The above cold mass is put inside

a cryostat (not shown here).
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Figure 3.3: POISSON model and �eld lines at 6500 ampere for SSC 50

mm Dipole with vertically split iron laminations. This magnetic design

was used in the prototype magnets built at FNAL.
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Table 3.3: Transfer function and b2 variation as function of current.

In all cases b2 is corrected to start from zero at 3.0 kA. FNAL yoke

calculations were done only with the code POISSON.

I T.F. (T/kA) b2 � 10�4

kA FNAL BNL yoke FNAL BNL yoke

yoke POISSON MDP yoke POISSON MDP

3.0 1.0450 1.0447 1.0430 0.00 0.00 0.00

4.0 1.0445 1.0441 1.0413 -0.02 0.08 0.05

5.0 1.0398 1.0397 1.0364 -0.04 0.22 0.16

5.5 1.0339 1.0340 1.0311 0.19 0.26 0.21

6.0 1.0257 1.0262 1.0236 0.36 0.14 0.17

6.25 1.0209 1.0219 1.0194 0.38 0.07 0.11

6.5 1.0159 1.0173 1.0148 0.35 -0.03 0.03

7.0 1.0053 1.0073 1.0051 0.17 -0.33 -0.19

7.6 0.9926 0.9955 0.9935 -0.15 -0.77 -0.60

8.0 0.9845 0.9877 0.9861 -0.38 -1.06 -0.85

8.6 0.9732 0.9766 0.9758 -0.70 -1.43 -1.20

The most prominent harmonic to re
ect this asymmetry is the skew quadrupole (a1) term.

The presence of the skew quadrupole harmonic at high �eld and methods to minimize it

have been discussed in a previous chapter.
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Table 3.4: Drop in transfer function at 6.6 tesla and the maximum

change in b2 and b4; higher harmonics remain practically unchanged.

Harmonic POISSON POISSON MDP

FNAL yoke BNL yoke BNL yoke

�(TF ), at 6.6T 2.84% 2.62% 2.70%

�(b2)max
, 10�4 0.36 0.28 0.22

�(b4)max
, 10�4 0.02 -0.03 -0.02
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Table 3.5: Results of POISSON computations for the SSC 50 mm

dipole with the horizontally split yoke design built at BNL.

I B
o

T.F. b2 b4 b6 b8 b10 b12

kA tesla T/kA 10�4 10�4 10�4 10�4 10�4 10�4

1� 1� 1.04493 0.020 -0.046 0.000 0.047 0.015 -0.001

3.000 3.1341 1.04471 0.031 -0.046 0.001 0.047 0.015 -0.001

4.000 4.1762 1.04406 0.111 -0.050 0.001 0.047 0.015 -0.001

4.500 4.6921 1.04268 0.140 -0.055 0.001 0.047 0.015 -0.001

4.750 4.9464 1.04135 0.182 -0.060 0.001 0.047 0.015 -0.001

5.000 5.1985 1.03969 0.255 -0.063 0.001 0.047 0.015 -0.001

5.250 5.4454 1.03721 0.299 -0.066 0.001 0.047 0.015 -0.001

5.500 5.6871 1.03402 0.291 -0.069 0.001 0.048 0.015 -0.001

5.750 5.9240 1.03027 0.235 -0.071 0.001 0.048 0.015 -0.001

6.000 6.1573 1.02621 0.172 -0.073 0.000 0.048 0.015 -0.001

6.250 6.3868 1.02189 0.100 -0.073 0.000 0.048 0.015 -0.001

6.500 6.6121 1.01725 -0.003 -0.072 0.000 0.048 0.015 -0.001

7.000 7.0513 1.00733 -0.300 -0.072 0.000 0.049 0.015 -0.001

7.600 7.5654 0.99545 -0.738 -0.070 0.000 0.049 0.015 -0.001

8.000 7.9014 0.98767 -1.032 -0.068 0.000 0.050 0.015 -0.001

8.600 8.3984 0.97656 -1.403 -0.064 0.000 0.050 0.015 -0.001
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Figure 3.4: Variation in Field Harmonics as a function of Current in the

SSC 50 mmBNL built prototype dipole magnet as computed by POISSON.
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3.4. Expected Quench Performance

The central �eld at which a given cable looses its superconducting properties (B
SS
, with

\ss" standing for Short Sample) depends on the current in the cable which is a function of

the maximum magnetic �eld at the conductor (the peak �eld) and the bath temperature.

The superconducting cables for the inner and outer layers are optimized to provide a critical

current (Ic) at a speci�ed temperature and magnetic �eld. In a two layer coil design the

magnetic design is optimized such that the computed short sample currents in the inner

and outer layers are nearly the same. The peak �eld (B
pk
) in the inner and outer layers

of the SSC 50 mm dipole are listed in Table 3.6 for two values of central �eld (B
o
). The

ratio of B
pk

to B
o
, the Enhancement Factor, is given in the next column. In each layer, the

peak �eld is found on the upper side of the top-most pole turn. The location of the peak

�eld is listed in the next column. It is expressed as % of the cable width, measured from

the upper-inner corner. The peak �eld calculations are done using the code MDP. MDP is

based on the integral method and therefore is expected to give a more accurate �eld at the

surface of the conductor as compared to codes based on the �nite element method which

require meshing the conductor.

Table 3.6: Peak �elds in the SSC 50 mm dipole as computed using

code MDP.

I B
o

Inner Outer

kA tesla B
pk
,T

Bpk

Bo

Location B
pk
,T

Bpk

Bo

Location

6.85 6.9058 7.2374 1.048 5% 6.0016 0.869 11%

7.20 7.2100 7.5595 1.048 5% 6.2660 0.869 11%

The calculations assume that the superconductor in the wire will have a critical cur-

rent density J
c
(5T; 4:2K) of 2750 A=mm2. The quality of the superconductor is degraded

when the wires are made in to a cable and put in the magnet. The calculations present-

ed in Table 3.7 have been done assuming 5% degradation (J
c
=2612.5) and 4.35 K bath

temperature.
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Table 3.7: Expected quench performance of the SSC 50 mm dipole with

5% cable degradation (J
c
= 2612:5A=mm2) and at 4.35 K temperature.

S
quench

is the computed current density in the copper at quench and S6:7T
at the design �eld of 6.7 Tesla.

Layer Cu/Sc B
ss

I
c

B
margin

T
margin

S
quench

S6:7T

# Ratio tesla A %over 6.7T kelvin A=cm2 A=cm2

Inner 1.7 7.149 7126 6.7 0.519 736 681

1.5 7.273 7273 8.6 0.625 788 715

1.3 7.399 7411 10.4 0.730 853 759

Outer 2.0 7.268 7267 8.7 0.580 919 834

1.8 7.445 7470 11.1 0.709 980 865

In Table 3.7, the �eld margin (B
margin

) and the temperature margin (T
margin

) are listed.

The temperature margin is de�ned as the maximumpossible computed rise in the operating

temperature (over the design value of normal operation, which is 4.35 K) before the magnet

will quench at the design central �eld (B
design

=6.7 tesla). The �eld margin is de�ned as

follows

B
margin

(%) =
B
ss
�B

design

B
design

� 100

The calculations are done for copper to superconductor ratios, CSR or Cu/Sc, of 2.0

and 1.8 in the outer layer and 1.7, 1.5 and 1.3 in the inner layer. The computed central �eld

(B
ss
) at the magnet quench point is listed together with the current in the cable at that

point (I
c
) and the current density (S

quench
) in the copper available to carry that current

after quench. A lower current density in the copper is expected to give better stability. The

current density in the copper at 6.7 tesla (S6:7T) is also listed. For stability purposes, S6:7T

may be a more appropriate parameter to consider than S
quench

.

The design values selected were a copper to superconductor ratio of 1.8 in the outer

layer and of 1.5 in the inner layer. The quench �eld B
ss

of 7.273 tesla in the inner layer

gives a �eld margin of 8.6% over the design operating �eld B
ss

of 6.7 tesla. The quench

�eld of 7.445 tesla in the outer layer gives a �eld margin of 11.1%.
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3.5. E�ect of Manufacturing Errors on the Allowed Harmonics

For various reasons, the actual value of a parameter used in designing the coil may

turn out to be somewhat di�erent than desired. In particular, deviations in the locations of

various turns in the coil are very important. This causes changes in the transfer function and

the �eld harmonics. In this section the e�ect of these errors in various cases are estimated

using a procedure developed by P.A. Thompson 130. The basic four fold symmetry in the

dipole coil geometry is retained in this analysis. Though this is not a realistic assumption,

it is useful in estimating the size of some errors. In Table 3.8 these e�ects are listed for a

nominal 0.05 mm variation in the given parameter.

First, the change in harmonics due to a change of +0.05 mm in the radius of every turn

in each current block, one block at a time, is given. The counting of the blocks in the table

starts at the inner layer and at the midplane of each layer. Next the e�ect of changing the

wedge size by +0.05 mm is estimated. Pole angle is held constant in this calculation by

reducing the conductor thickness by an appropriate amount. The counting scheme for the

wedges is the same as it is for the current blocks. It is possible that during the molding,

the thickness of the cable is not reduced uniformly within a layer. To estimate this e�ect, a

linear increase in the cable thickness is assumed going from the midplane towards the pole,

followed by a linear decrease, such that the middle turn is displaced azimuthally by 0.05

mm. The pole angle does not change during this perturbation. This e�ect is given for the

inner and outer layers in the next two rows of the table. The e�ect of increasing the pole

angle by 0.05 mm in the inner and in the outer layer is shown in the last two rows. In each

group the Root Mean Square (RMS) change of these variations is also given.
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Table 3.8: The e�ect of a 0.05 mm increase in the given parameter on

the transfer function and the �eld harmonics.

Parameter TF b2 b4 b6

changed T/kA 10�4 10�4 10�4

Radius of Block No. 1 0.31 -0.25 -0.10 -0.01

Radius of Block No. 2 -0.32 0.31 0.12 0.01

Radius of Block No. 3 -0.12 0.36 -0.02 -0.01

Radius of Block No. 4 -0.20 0.33 -0.08 0.01

Radius of Block No. 5 -0.11 -0.04 -0.01 0.00

Radius of Block No. 6 -0.78 0.22 0.03 0.00

RMS Blocks 0.38 0.27 0.07 0.01

Thickness of Wedge No. 1 -1.56 -0.48 0.02 0.01

Thickness of Wedge No. 2 0.83 0.59 0.05 -0.01

Thickness of Wedge No. 3 2.32 0.71 -0.04 0.00

Thickness of Wedge No. 4 -0.57 -0.11 0.00 0.00

RMS Wedges 1.48 0.52 0.03 0.01

Cable thickness inner 2.63 1.08 0.05 -0.01

Cable thickness outer 1.99 0.48 0.02 0.00

RMS Cable thickness 2.33 0.83 0.04 0.01

Pole angle inner -4.01 -0.45 0.06 -0.01

Pole angle outer -2.26 -0.42 0.00 0.00

RMS Pole angles 3.25 0.43 0.04 0.01
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3.6. Stored Energy and Inductance Calculations

Stored energy calculations are done with the computer code POISSON 135. POISSON

uses the following formula to compute the stored energy per unit length (E
l
) over the cross

section area :

E
l
= 1

2

Z
a

J A
z
da;

where A
z
is the vector potential and J is the current density in the mesh triangle having an

area da. The integration needs to be performed only over the regions containing current. At

low �elds when the �eld B is proportional to I (i.e. when yoke saturation is not signi�cant),

the stored energy is expected to be proportional to B2 or I2.

The stored energy and the inductance are related through the following formula :

Stored Energy = 1

2
Inductance� (Current)

2
:

The inductance decreases at high �eld as the iron yoke saturates.

The results of POISSON computations for the SSC 50 mm aperture dipole are given

at 6.5 kA in Table 3.9 for the stored energy per unit length and the inductance per unit

length. The total stored energy and the inductance for a 15 m long dipole are also given.

Table 3.9: Stored Energy and Inductance at 6.5 kA as computed with

the code POISSON for the SSC 50 mm aperture dipole.

Stored Energy per unit length, kJ/m 105.0

Stored Energy for 15 m long Dipole, kJ 1575.6

Inductance per unit length, mH/m 4.972

Inductance for 15 m long Dipole, mH 74.585
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3.7. Lorentz Force Calculations

The value of Lorentz force per unit of axial length on each turn is obtained from the

components of the magnetic �eld (B
x
; B

y
). These components are calculated using program

MDP. Since B
x
and B

y
are not uniform in a turn, an average value of these components is

obtained from a grid of 10 � 2 across the width and thickness of the cable.

The variation in the magnitude of the radial and azimuthal components of the Lorentz

forces, namely F
r
and F

a
(also referred to as F

�
), with turn number is shown in Fig. 3.5. The

turn numbers are counted from the midplane. The Lorentz force acts on the coil such that

the azimuthal component compresses the coil on the midplane and the radial component

expands it outward. Though the radial Lorentz force on the turns in the outer layer is very

small, the force on the turns in the inner layer must be transmitted through the outer layer

to the structure of the magnet.
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Figure 3.5: The magnitude of the components of the Lorentz force on the

individual turns in a SSC 50 mm prototype magnet. The radial component

of the force (F
r
) pushes the coil outward and the azimuthal component (F

a
)

compresses the coil towards the midplane (horizontal plane). There are 19

turns in the inner layer and 26 turns in the outer layer of each quadrant.
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3.8. Summary of the Design

A summary of the coil and iron cross-sections are given respectively in Table 3.10 and

Table 3.11. The coil has two layers and the number of turns is the number of turns in the

upper or lower half of a layer. The �eld margin in this cross section is limited by the inner

layer. If the cable used in the inner layer had a copper to superconductor ratio of 1.3, the

margin would be 10.4% (see Table 3.7).

Table 3.10: Summary of SSC 50 mm dipole coil cross section.

Layer ! Inner Outer

No. of Turns : : : : : : : : 19 26

Strand Diameter, mm 0.808 0.648

Strands per turn : : : : : 30 36

Coil i.d., mm : : : : : : : : 49.56 74.91

Coil o.d., mm : : : : : : : : 75.36 99.42

B
peak

=B
o
: : : : : : : : : : : : 1.048 0.869

Cu/SC : : : : : : : : : : : : : : 1.5 1.8

Margin over 6.7 T : : : 8.6% 11.1%

Table 3.11: Summary of SSC 50 mm dipole iron cross section. �(TF ) is

the change in transfer function, �b2 in b2 and and �b4 in b4 due to saturation.

Inner Diameter, mm 135.6

Outer Diameter, mm 330.2

�(TF ), at 6.7 T : : : : : 2.6%

�b2, prime unit : : : : : : 0.3

�b4, prime unit : : : : : : 0.03
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